Блок питания

ASUS представила серию блоков питания TUF Gaming Bronze с вентиляторами Axial Tech

Рубрики: Новости индустрии
Метки: | |
Дата: 10/08/2020 11:36:50
Подписаться на комментарии по RSS

В эти выходные компания ASUS отметилась выпуском линейки блоков питания ASUS TUF Gaming Bronze. Серия дебютирует с двумя среднеуровневыми по мощности моделями номиналами 550 и 650 Вт.

Одним из главных достоинств новинки тайванский разработчик считает применяемые в решениях 135-мм вентиляторы Axial Tech на двойном шариковом подшипнике, у которых лопасти соединены внешним кольцом, что позволяет обеспечить полностью осевое направление воздушного потока. Вдобавок к этому фаны обладают поддержкой функции «0 dB technology», что позволяет им автоматически прекращать работу при минимальных загрузках БП.

ASUS TUF Gaming Bronze

ASUS TUF Gaming Bronze

ASUS TUF Gaming Bronze

Отмечается также наличие специальной поверхностной обработки основной печатной платы, которая защищает ее от износа с годами (от влаги и пыли). Еще одно нововведение – впервые для сегмента 6-летняя гарантия.

Блоки питания ASUS TUF Gaming Bronze предложат одну силовую линию +12 В, сертификат энергоэффективности 80 Plus Bronze, а также системы защиты от перенапряжения, перегрузки, перегрева и короткого замыкания.

ASUS TUF Gaming Bronze

ASUS TUF Gaming Bronze

Обе модели оснащены фиксированными кабелями в оплетке, одним разъемом 4+4-pin EPS, одним 24-контактным ATX, пятью SATA и четырьмя Molex. Модель на 550 Вт предлагает два 6+2-контактных разъема PCIe Power, а модель на 650 Вт имеет четыре таких. Длина блоков питания составляет 150 мм.

Стоимость новинок ASUS пока что не раскрывается.

[Распаковываем, смотрим] Блок питания Zalman ZM1000-EBT

Рубрики: Корпуса и БП
Метки: | | |
Дата: 25/06/2016 21:00:00
Подписаться на комментарии по RSS

Сегодня к нам на основной тестовый стенд заглянул блок питания Zalman ZM1000-EBT. Эта моделька является флагманом серии EBT и предлагает пользователю 1000W по линии +12V. Зачем такая мощность может понадобиться? Как максимум для обеспечения питанием системы из тандема видеокарт 2-3 потянет, а как минимум для работы в «спокойном режиме» даже с добротной связкой на базе одной видеокарты.

Zalman ZM1000-EBT

Дорогой читатель, далее я расскажу о данном блоке чуть подробнее, но тестовый пакет сегодня мы обойдем стороной. Посмотрим на сам БП, его комплект поставки, исполнение и оставим отзыв о работе в хорошо нагруженной системе. Начнёмс…

Комплект поставки

Zalman ZM1000-EBT прибыл к нам в весьма обычной, для блока питания, упаковке. На ее гранях есть хорошо читаемое название, перечень сертификаций, характеристик и несколько фотографий с внутренним устройством блока.

Zalman ZM1000-EBT

Мощностные характеристики сведены в табличку и есть как на упаковке, так и во вложенной комплектной инструкции.

Zalman ZM1000-EBT

Характеристики

С информативностью на официальной странице продукта все тоже в порядке. Так для перечисления списка характеристик я воспользуюсь именно табличкой с сайта. Она расположена ниже. Из первоочередных пунктов отмечанием одну общую линию +12V с мощностью 1000 Вт и сертификацию 80 PLUS Gold. Общая линия +12V – штука хорошая, лично я понял это в момент запуска небольшой фермы из 3 видеокарт. При такой реализации не нужно задумываться к какому именно разъему,  что подключить и как их можно скомбинировать.

Zalman ZM1000-EBT

Набор кабелей

Открыв упаковку, в комплекте поставки находим: сам блок питания ZM1000-EBT, набор кабелей, болты для крепления, а также сетевой кабель и небольшую инструкцию. Кстати, стандарт сетевого разъема указан на упаковке.

Zalman ZM1000-EBT

Zalman ZM1000-EBT полностью модульный блок питания, даже кабель питания ATX24 тоже съемный. Меня немного удивило, но 24-pin кабель отличается от всех остальных. Он выполнен в весьма привычной оплетке без полного перекрытия всех жил.

Zalman ZM1000-EBT

Остальные кабеля изначально располагают черной прорезиненной оплеткой. Относительно друг друга жилы кабеля расположены в «плоском сечении». Такие вариации уже встречались нам в некоторых блоках питания, проводить их укладку в корпусе удобно.

Zalman ZM1000-EBT

Полный список кабелей представлю в виде небольшой схемы с указанием длины и количества разъемов. Набор достаточный. Его хватит на три видеокарты, 12 устройств с разъемом Serial ATA, ну и не распространённые сейчас Molex тоже поддерживают общую планку.

Zalman ZM1000-EBT

Внешний осмотр

Сам ZM1000-EBT выполнен в металлическом корпусе. Его окрас черный, есть несколько наклеек, которые продолжают общий дизайн упаковки. Высота и ширина блока задаются стандартом ATX, а вот длина в данном случае составляет весьма привычные для вариаций такой мощности 180 миллиметров. Для полноразмерных корпусов как раз, для компактных желательно найти вариант поменьше, хотя если захотеть…

Zalman ZM1000-EBT

Вентиляционная решётка оформлена с очень интересным и не совсем привычным узором. Вокруг нее есть металлическая вставка с окраской под золото, при этом виднеющаяся крыльчатка вентилятора белая. Как по мне наблюдается небольшой разброс в окрасе: черный, красный, белый, золотой :).

Zalman ZM1000-EBT

На «дне» блока питания есть еще одна информационная наклейка, с перечислением почти всей технической информации о блоке.

Zalman ZM1000-EBT

Коннекторы для кабелей расположены в пару рядов. Они обладают защелками для фиксации кабеля, а так же носят маркировки с указанием их предназначения.

Zalman ZM1000-EBT

Тыльная сторона расположила минимальный набор: разъем для сетевого кабеля, а также тумблер для включения и выключения блока.

Zalman ZM1000-EBT

За охлаждение блока отвечает один вентилятор от компании Globe Fan. Его маркировка RL4Z S1352512H, крыльчатка может вращаться с максимальной скоростью в районе 2000 об/мин. К плате припаян, снять,  просто так не удастся. Для вентилятора реализована технология Extra Cooling System, что позволяет ему вращаться после выключения системы для охлаждения компонентов.

Zalman ZM1000-EBT

Внутренности блока представлены на паре фото ниже.

Zalman ZM1000-EBT

Zalman ZM1000-EBT

Резюмируем

На момент публикации материала, в столичной рознице, за Zalman ZM1000-EBT 1000W просили порядка 11000 рублей. С такой ценовой планкой герой сегодняшнего обзора является самым доступным вариантом БП с мощностью от 1000W и сертификатом 80 PLUS Gold.

При полной нагрузке хорошо разогнанной связки Intel Core i5 6600K и ASUS Poseidon GTX 980 Ti вентилятор блока питания немного увеличивал свои обороты относительно режима простоя. В таком режиме на абсолютно бесшумном стенде его слышно, но с появлением накопителя или парты тройки других вентиляторов шум пропадал в общей массе. В режиме простоя крыльчатка не останавливается. За время работы посторонние звуки, по мимо вентилятора, выявлены не были.

Zalman ZM1000-EBT

Если подвести итог нашего знакомства с Zalman ZM1000-EBT, без детальных тестов можно сказать следующее: блок является самым доступным вариантом с данной мощностью и уровнем сертификации, реализовывает модульное подключение кабелей и располагает их обширным комплектом. В работе посторонних звуков не издает, но и не является полностью бесшумным. Из визуальных аспектов можно выделить большой разбег по гамме, а также отличающейся от прочих основной кабель ATX24.

Без шуток. Сравнение двух топологий исполнения блоков питания

Введение, Постановка задачи, Аппаратура

Введение

Условно говоря, компьютерные блоки питания делятся на два класса - с единой цепью стабилизации и несколькими выходами, т.н. групповая стабилизация, либо  применяется топология с выделенным источником 12 вольт, из которого формируются напряжения 5 вольт и 3.3 вольта независимыми преобразователями.  Второй вариант построения объявляется «продвинутым» решением, которое обещает уникально высокие эксплуатационные характеристики - поддержка любого процентного соотношения нагрузки по выходным каналам, способность работать в очень широком диапазоне токов без нарушения балансов напряжений всего источника питания. Данный тезис имеет под собой веские основания, независимые преобразователи 12->5(3.3) позволяют получить очень высокую стабильность выходных напряжений, но это будет работать только в идеальных режимах, которые редко встречаются в реальных условиях эксплуатации. Действительное положение дел способно омрачиться различными нюансами функционирования в составе устройства электропитания, столь тщательно скрываемого рекламой и маркетингом. При оценке дел следует учитывать все особенности работы блоков питания, а не только то, что пишут в проспектах. Народная мудрость гласит - гладко было на бумаге, да забыли про овраги. Остается лишь понять, на сколько глубоки эти овраги.

Постановка задачи

Попробуем разобраться в этом выбора технологий. Для этого стоит взять два блока питания схожей мощности и различной топологией. При выборе классов «пороговой» величиной является мощность БП. Менее 750 Вт, как правило, используют групповую стабилизацию, а выше данной цифры - отдельные преобразователи по выходам 5 и 3.3 вольта. Вообще-то, интерес представляет сама природа возникновения появления специальных преобразователей в особо мощных блоках питания. Вряд ли это делается от доброй воли производителей, сие было бы не логично - отдельные источники питания, даже маломощные, стоят существенно дороже дополнительного отвода обмотки на выходном трансформаторе и к их появлению должна быть весьма важная причина. И она существует - при перегрузке БП с групповой стабилизацией по одному из выходов 12/5 В происходит резкий выброс напряжения по альтернативному выходу, что может приводить к разрушению цепей, которые подключены к данному БП. В частности, при (случайном) коротком замыкании 5 или 12 вольт довольно часто выходят из строя HDD, как единственные из устройств, имеющие на своем борту элементы защиты от перенапряжений. Другой проблемой, вытекающей из объединения выходов 12/5 для групповой стабилизации, является общая «мощностная» защита от перегрузок. По ограничению  «240ВА» на канал 12 вольт накладывается предел по нагрузке в 18(20) ампер, а выход 5 вольт какого либо ограничения обычно обделен. Таким образом, перегрузка по данному выходу возникает только в том случае, когда превышается общая мощность всего блока питания. Для примера возьмем пороговую величину мощности, 750 Вт, которая служит «водоразделом» между двумя этими топологиями. Итак, 750 Вт означает, что БП может обеспечить 750 Вт по любому из двух силовых выходов, и 12 вольт и 5 вольт. Критерий общей перегрузки наступит при токе 750/5=150 ампер. Для этого цепь замыкания должна иметь сопротивление 5/150=33 мОм. Если учесть, что сопротивление проводки обычного шлейфа питания периферии порядка 15 мОм, к нему же стоит прибавить сопротивление используемого переходника-удлинителя, часто применяемого для подключения других устройств, то общее сопротивление проводки легко может превысить данную цифру (33 мОм). Это приведет к тому, что при случайном замыкании цепи на землю блок питания не выключится, а продолжит функционировать в обычном режиме с выдачей полной мощности в провода подачи питания. Попробуйте представить 750 Вт на куске провода в пол метра и вы можете оценить последствия этого действия. Пожар в системном блоке при коротком замыкании вовсе не «экзотика» и такие случаи отмечаются. Т.е, отдельные преобразователи в мощных БП это вовсе  не «добрая воля» производителей, а суровая необходимость. Однако, вокруг цифры «750 Вт» выпускается много моделей блоков питания и это одна из самых востребованных мощностных категорий, выбираемых пользователями, получивших опыт общения с продукцией «350 Вт, $30». А именно, выбор тех, кто знает, что надо для нормально работы системы. Остается лишь понять, стоит ли тратить деньги за наличие независимых преобразователей 5/3.3 вольта или это не более чем миф.

Для получения четкого ответа на данный вопрос следует провести массовое тестирование двух классов блоков питания, что представляется нереальным для автора данной статьи, поэтому, увы,  тест будет не столь обширный. Это расстраивает, но лучше начать что-то делать, чем топтаться на месте.

Аппаратура

Для выполнения работ используется тестовый стенд, собранный на основе фирменного тестового оборудования фирмы Agilent, специализированного для выполнения исследований источников питания. Данный набор дополнен генератором помех на выполнение проверок на соответствие требований ГОСТ'ов для компьютерных систем. В принципе, стенд имеет описание, но данная бюрократия мало кого интересует, поэтому сразу перейдем к непосредственным участникам тестирования. Для исследования стоит взять пару БП примерно равной мощности, но с различающейся топологией. Пограничной цифрой является «750», поэтому выбор должен сосредоточится вокруг нее. У автора данной статьи не такой уж и большой ассортимент в чулане, поэтому остановимся на двух моделях, «Aerocool Strike-X 800» и «Cougar CMX 700»:

Aerocool Strike-X 800

Cougar CMX 700

Стоимость устройств примерно одинакова, с поправкой на мощность, что позволит произвести сравнение «лоб-в-лоб», без каких либо скидок. Впрочем я должен сразу извиниться, что не смог подобрать БП с равной мощностью. Размер моего чулана не столь велик, прошу прощения.

Итак, имеется пара блоков питания, примерно одинаковой мощности и мерой «фирменности». Последняя характеристика крайне важна, никто не ждет каких либо серьезных провалов от фирм, напрямую специализированных на выпуске данного вида продукции, а вот «второй эшелон» и различного рода «дочерние компании» способны подкинуть какие либо «нежданки»(с)Задорнов. Итак, «Aerocool Strike-X 800» с отдельными преобразователями против «Cougar CMX 700» с групповой стабилизацией. Поехали!

Организационный вопрос - исследование будет производиться над двумя блоками питания, при этом графики и характеристики БП «Aerocool Strike-X 800» будут приводиться слева и отмечаться в тексте сокращенным определением «Strike-X 800» (Strike-X), а БП «Cougar CMX 700» приводиться справа с отметкой в тексте «CMX 700» (CMX).

Тестирование, Система охлаждения, Выводы

Тестирование 

Процесс исследования состоит из некоторого набора тестов, которые выполняются над каждым из участников, после чего производится «разбор полетов». Процесс не самый быстрый, зато позволяет выполнить наиболее точную оценку свойств испытуемых объектов. При выполнении исследования за нормы принимаются положения EPS v2.92, в котором сделаны указания на поддержку высокоэффективных процессоров, для которых свойственно крайне малое потребление в состоянии простоя.

Включение

При установке сигнала PSON в активное состояние блок питания обязан включиться за очень небольшой интервал времени, при этом выходные напряжения должны появиться максимально быстро и достаточно синхронно. Не допускается каких-либо перенапряжений и провалов. Впрочем это «бла-бла-бла» никому не интересно и стоит сразу перейти к результатам. Отмечу лишь, что все необходимые численные значения приведены в требованиях EPS 2.9x и все заинтересованные могут ознакомиться с ним без моего участия. 

Aerocool Strike-X 800

Cougar CMX 700

 

Характеристика

Aerocool Strike-X 800

Cougar CMX 700

Время задержки включения, мс

54

56

Время установки PSOK после появления напряжений, мс

281

260

Время удержания до выключения PSOK, мс

36

41

Время от сброса PSOK до снижения напряжений, мс

15

5.9

 

Оба блока питания показывают схожие характеристики и они удовлетворяют спецификации EPS, но нас более интересует не общие свойства, а то, как работают каналы 5/3.3 вольта по отношению к выходу 12 вольт. Для этого посмотрим на сам процесс включения.

Aerocool Strike-X 800

Cougar CMX 700

 

И вот здесь разница в топологиях проявляется весьма отчетливо. Если CMX 700 с групповой стабилизацией (справа) показывает практически одинаковый характер появления напряжения на выходах 3.3-5-12, то БП Strike-X 800 (с независимыми преобразователями 3.3/5) четко демонстрирует поочередный старт трех устройств. Вначале появляется 12 вольт, затем начинает функционировать выход 5В, затем аналогичное действие происходит на выходе 3.3В. Все выходы появляются строго поочередно. Вообще-то, при разработке устройств питания с множественными выходами строго оговаривается, что более низковольтный выход не имеет права быть большей величины, чем высоковольтный. При нарушении данного правила устройства могут сгореть. Для выполнения этого правила в своих изделиях (да-да, не удивляйтесь, автор еще и что-то может разрабатывать) приходилось устанавливать специальные диодные ограничители и обеспечивать заранее предсказуемый порядок включения-отключения. К сожалению, не все устройства способны устойчиво функционировать в таком строго упорядоченном мире. При работе SoC Broadlight я столкнулся с крайне неустойчивым запуском системы. Длительный поиск не выявлял каких либо неисправностей до тех пор, пока я не сменил режим запуска источника питания на одновременный (т.н. «tracking mode»). После этого все странным образом самоустранилось и система работала без замечаний. Причина находилась в том, что все напряжения должны появляться одновременно, даже если это и не выставлено в требованиях к системе, иначе более низковольтные узлы не получают напряжения вовсе, даже при неактивном уровне сигнала подтверждения наличия питания. Атавизм из личного опыта, не более того. Возвращаясь к нашим БП хочется отметить, что Strike-X 800 демонстрирует строго последовательный порядок появления напряжений. Это не запрещается требованиями EPS, но, извините, мне это не нравится, потенциальная «проблема».

Если абстрагироваться от порядочности появления и посмотреть на то, как происходит установка самих напряжений, то в этом не выявляется каких-либо очевидных деструктивных элементов.

Характеристика

Aerocool Strike-X 800

Cougar CMX 700

Пиковое напряжение выхода 3.3В, В

3.42

3.57

Пиковое напряжение выхода 5В, В

5.17

5.15

Пиковое напряжение выхода 12В, В

12.03

12.25

Время фронта выхода 3.3В, мс

3.2

6.4

Время фронта выхода 5В, мс

5.4

8.8

Время фронта выхода 12В, мс

9.5

9.4

Время несогласованности появления выходов, мс

3

3

 

Оба блока питания демонстрирую достаточно безопасный процесс появления напряжения на каналах 3.3/5/12, выброс «вверх» менее 10%, что обязано обеспечить беспроблемный запуск узлов системного блока. Однако последняя характеристика, время несогласованности появления, вызывает весьма неприятный оттенок. У блоков питания с независимыми преобразователями 3.3/5 процесс запуска протекает хоть и столько же по времени, но менее «правилен». Это особенность данной топологии и от нее невозможно избавиться. Теоретически, разработчики БП могли бы перевести преобразователи в режим «tracking» (слежения), но вряд ли стоит этого ждать в серийных блоках питания - консерватизм решений отрасли просто неимоверен.

Нагрузочная характеристика

При «продвижении» (маркетинг) блоков питания с отдельными преобразователями по выходам 3.3/5 тщательно муссируется супер-стабильность выходных напряжений. Вроде бы это логично, коль скоро каждый выход БП имеет собственную цепь стабилизации, то следует ожидать крайне качественной поддержки выходных уровней. Можно долго рассуждать о вкусе пряников, а можно взять и попробовать.

Нагрузка по выходу 12 вольт

Aerocool Strike-X 800

Cougar CMX 700

 

Нагрузка по выходу 5 вольт

Aerocool Strike-X 800

Cougar CMX 700

 

Нагрузка по выходу 3.3 вольта

Aerocool Strike-X 800

Cougar CMX 700

 

Приведены три варианта исследования, во всех случаях Strike-X 800 демонстрирует очень красивые результаты выхода 12В - стабильность выходных уровней производит впечатление и хочется сразу бежать в магазин. Вот она, сила зомбирования. )) Однако посмотрите на остальные два выхода, 3.3 и 5 вольт. Нам обещали «суперстабильность» по всем напряжениям, но они кое-где даже проигрывают блоку питания с групповой стабилизацией! Возможно, у вас здесь возникает мысль, что примененный тестовый стенд сделан криво, и нечего гнать туфту на прогрессивную топологию. Увы, вынужден вас разочаровать, в системе измерений нет настолько грубых ошибок, чтобы так исказить результаты. Да и использование специализированной для тестов БП инструментальной базы как-то не допускает подобного рода ошибок. Проблема лежит в построени блока питания как устройства с множеством выходов, ошибка находится в самом БП. Производители очень рекламируют систему независимой стабилизации, но тщательно «забывают» известить о том, что они полностью игнорируют разводку цепи «земля», которая является общим для всех выходов. Как следствие, блок питания может поддерживать сверх-стабильные выходные уровни, но только при подключении нагрузки непосредственно  к самому блоку питания. Любые попытки использовать общую шину «земля» для нескольких нагрузок неизбежно приведет к затеканию напряжения из одного канала в другой и нарушит тщательную стабилизацию. Что и произошло при проведении данного исследования. Возьмем первый тест, нагрузка по выходу 12В: хотя по другим выходам (3.3/5) ток нагрузки не менялся, но напряжение на них снижалась по мере увеличения тока по 12В. Причина описана ранее - падение на проводе «земля», не охваченной цепями стабилизации. При этом БП CMX 700 с групповой стабилизацией демонстрирует лучшие характеристики стабильности. Впрочем, вы можете не соглашаться с мнением автора данной статьи и выполнить трактовку результатов самостоятельно. Причина улучшенной   работы CMX 700 находится в недостатке  групповой стабилизации 5/12 - в нем выходное напряжения одного канала зависит при нагрузке в другом. В данном тесте блок питания нагружали по одному выходу (5 или 12), что вызывало некоторый «перекос» и подъем напряжения в «альтернативном» канале, что компенсировало   величину  потерь на цепи земли. Вот в чем парадокс - «недостаток» топологии работает как «достоинство» и еще как работает! Посмотрите результаты, они перед вами. Как итог данного теста хотел бы отметить, что независимые преобразователи демонстрируют очень стабильную цепь 12В и, уж извините, провальные показатели по остальным выходам, а групповая стабилизация предоставляет прямо противоположное. Увы, явного победителя нет, хотя маркетологи обещали нам небо в алмазах для независимых преобразователей. Да, такая топология потенциально могла бы обеспечить сказочные характеристики, вот только про «овраги» не стоит забывать. К слову, исправление можно выполнить и самостоятельно, вот только в домашних условиях и без соответствующей подготовки хороших результатов ждать не стоит - при «бездумном» переносе цепей обратной связи нарушится стабильность БП с соответствующим итогом и струйкой дыма.

Выходное сопротивление, мОм:

Канал

Aerocool Strike-X 800

Cougar CMX 700

12В

0.41

5.7

14

19

3.3В

18

3.6

 

В данной таблице приведены выходные сопротивления каналов, а не степень их взаимовлияния. Похоже, способ обработки и представления результатов требует доработки – необходимо обеспечить формирование отчета не только в приведенных численных характеристиках, но и в мере взаимного влияния каналов. Что же, это поправимо, но пока же можно обойтись качественным   сравнением диаграмм, представленных выше.

Что до самих выходных сопротивлений, то Strike-X 800 демонстрирует крайне высокое качество  выхода 12В, что не удивительно, а вот выходы 3.3/5 смотрятся очень бледно. И здесь хочется вспомнить одну известную фразу «Тщательней надо, ребята»(с)Жванецкий. Тогда и БП будут нормальными. А пока выходит «пшик».

Комплексная нагрузочная характеристика

Знаете, когда я слышу «КНХ», то рука сразу тянется к пистолету. Это такой бре...

Короче, смотрите сами, без комментариев:

Выход 12 вольт

Aerocool Strike-X 800

Cougar CMX 700

 

Выход 5 вольт

Aerocool Strike-X 800

Cougar CMX 700

 

«КНХ» по выходу 3.3В не снимается, в виду, гм, общей целесообразности, реального неиспользования этого выхода для питания внешних устройств и относительно стабильной и слабой величины нагрузки по данному каналу.

Лично я не вижу существенной разницы между блоками питания. Полезность данного теста ниже плинтуса, но какой же обзор может обойтись без эстетического гадания по цветовым пятнам?

Время удержания сети

Это измерение выполняется на соответствие норм ГОСТ'а и, по большому счету, не должно затрагивать тему статьи. Но данный тест поддерживается стендом, почему бы не посмотреть, из чистого любопытства?

Исследование выполняется двумя способами - «классическим» (и неправильным), по измерению времени удержания после отключения сети, и вторым - с перебором времени отсутствия сети до факта выхода БП из рабочего режима (отключения). Последний вариант корректнее отображает реальные условия работы и предоставляет много дополнительной информации, полезной для подключения БП к слабой сети или бесперебойному источнику. Вначале «классика», отключение сети:

Aerocool Strike-X 800

Cougar CMX 700

 

Так, Strike-X 800 провалил данный тест! Не думал, что такое произойдет когда-нибудь, но свершилось. Я искренне разочарован. По нормам (описано в любой спецификации блоков питания) сигнал PSOK обязан сниматься ранее снижения уровня выходных напряжений не менее, чем за 1 мс. Здесь же уровень выхода 12В вполне очевидно начал снижаться и только после этого БП соизволил снять PSOK. Как это должно выглядеть «правильно» - можете посмотреть на правой диаграмме БП CMX 700 - вначале был снят PSOK, затем последовало снижение выходных напряжений. Т.е. в Strike-X 800 реализация компаратора состояния сети выполнена не подходящим образом и должна быть переделана.

Характеристика

Aerocool Strike-X 800

Cougar CMX 700

Время удержания PSOK, мс

Неправильно

15.8

Время от сброса PSOK до снижения вых. напряжений, мс

Неправильно

7.8

Второй вариант испытания.

Aerocool Strike-X 800

Cougar CMX 700

 

Ну вот и вылезли все «кишки». БП Strike-X 800 отключается только тогда, когда напряжение на выходе 12В становится чрезвычайной низким. Скорее всего, системный блок к этому времени уже успеет «зависнуть». Ну а дальше сами считайте - если брать по критерию полного отключения (когда уже все зависло?), то Strike-X 800 обеспечивает 20 мс, если по порогу появления пульсаций, то только 15 мс. По нормам ГОСТ блок питания обязан выдержать два полупериода или 20 мс. Справляется ли с этим требованием данный блок питания - решайте сами, я «пас».

У CMX 700 тоже наблюдаются проблемы, хотя они несколько иного рода - «ударный» ток при резком появлении сети приводит к повышению уровня пульсаций выходных напряжений. Это плохой симптом.

Последний цикл тестирования, вызвавший отключение блока питания.

Aerocool Strike-X 800

Cougar CMX 700

 

В виде таблицы:

Характеристика

Aerocool Strike-X 800

Cougar CMX 700

Время удержания БП в рабочем состоянии, мс

20 (15)

16

 

Хочется отметить, что метод перебора времени провала показал совсем другие цифры, чем демонстрирует «классический» метод и эти результаты более корректны.

Вот такой вышел грустный рассказ - тест вроде бы простой, а Strike-X 800 сел в безоговорочную «лужу». Очень обидно, сам БП мне нравился.

Изначально я думал, что данный тест будет бесполезен при рассмотрении различных топологий, а оказалось совсем наоборот. Чем больше «тыкаешь иголкой», тем лучше результат. Для наших подопытных было выяснено, что БП с независимыми преобразователями потенциально могут выдавать недопустимо   высокий уровень пульсаций по основному каналу 12В, что ни как не будет проявляться на выходах 3.3/5 вольт и при этом будет отсутствовать сигнализация дезактивацией сигнала PSOK. А это уже неприятно и является прямым нарушением спецификаций работы БП.

Импульсная нагрузка

Блок питания обеспечивает работу сложной системы с весьма непостоянным уровнем потребления, причем без какой либо явной привязки к выходным каналам. Ранее приводилась нагрузочная характеристика, но этот тест показывает лишь выходное сопротивление на постоянном токе, а по «переменной составляющей» могут происходить самые причудливые превращения. Впрочем, я выразился слишком мудрено, исправлюсь - нагрузочная характеристика покажет вам лишь то, как «проседает» напряжение под нагрузкой. Но есть и другая характеристика - как будет реагировать блок питания на кратковременные броски (или сброс) тока. В данном случае обратная связь уже не справляется со стабилизацией и все неприятные особенности будут в большей степени зависеть от качества выходного фильтра канала - параметров выходного конденсатора и индуктивности фильтра.

Исследование заключается в попеременной подаче короткого импульса тока поочередно на каждый выход (12В, 5В, 3.3В) для двух мер нагрузки всего блока питания - 10% и 80%.

Aerocool Strike-X 800

Cougar CMX 700

 

Если брать цепь 12В, то переходные процессы Strike-X 800 протекают дольше и интенсивнее. Да уж, от раздельной стабилизации такого совсем не ожидаешь. Что до выходов 3.3/5, то оба БП демонстрируют схожий характер/уровень помех, чего, опять же, никак не ждешь от Strike-X 800 с раздельной стабилизацией.  Можно провести детальный разбор полетов с выяснением зависимостей, но и так видно - чуда не свершилось, обе топологии исполнения БП демонстрируют одно и тоже. Причины разные, но результат то одинаков.

Перегрузка по току

К сожалению, не так уж редок случай, когда какой-нибудь провод или разъем случайно попадает на землю, что вызывает отключение БП. Если не эта небрежность (а кто от нее застрахован?), то может «помочь» сгорание преобразователя на материнской плате или периферийном устройстве. От такой неприятности никто не застрахован, поэтому БП проектируются с защитой от перегрузки и его испытание должно содержать пункт по исследованию работы в данном стрессовом режиме. При этом интерес представляет как время выключения, так и характер изменения выходных напряжений в момент перегрузки. Вряд ли кому-нибудь понравится, если БП при коротком замыкании по 5В выдаст по 12В что-то вроде 20 вольт - периферия будет уничтожена. Тест заключается в поочередном замыкании цепей 5В и 12В на землю через резисторы 20 и 30 мОм соответственно.

Вначале 5 вольт:

Aerocool Strike-X 800

Cougar CMX 700

Обращайте внимание на размерность времени!

Strike-X 800 обнаружил перегрузку практически мгновенно, через 0.05 мс был снят PSOK (что означает отключение силового преобразователя БП).

Выход 12 вольт:

Aerocool Strike-X 800

 

Cougar CMX 700

 

Как и в предыдущем случае, Strike-X 800 очень четко отлавливает перегрузку и быстро отключается, хотя и CMX 700 демонстрирует не худшие показатели.

Характеристика

Aerocool Strike-X 800

Cougar CMX 700

Время отключения по перегрузке канала 5В, мс

0.05

12.2

Время отключения по перегрузке канала 12В, мс

0.14

0.07

 

Вообще-то, почти все представленные данные менее 1 мс, что достаточно быстро,  исключение составляет блок питания CMX 700 с выходом 5В (12.3 мс). Это означает, что он не оборудован датчиком перегрузки по выходу 5В, или условия его работы нарушены. Как следствие, блок питания «чувствует» перегрузку только основным преобразователем, чем и объясняется столь долгая реакция на перегрузку. Фактически, БП выдает по каналу 5В почти правильное напряжение, чуть менее четырех вольт, с током нагрузки порядка 200 ампер. Это не удивительно, БП на 700 Вт, разделение на каналы 12В и 5В весьма условно, это лишь отвод на общем трансформаторе, а потому ничего не мешает снять полную мощность по любому из двух силовых выходов БП. Будь сопротивление короткого замыкания чуть больше и блок питания не выключился бы вовсе. Последствия понятны и без практической проверки. Это как раз та самая причина, почему не делают особо мощные с групповой стабилизацией, 700-750 Вт - это предел.

При проведении теста отдельно не производится измерения максимальной величины напряжений по выходам 3.3-5-12В, но и так видно по диаграммам, что блок питания с раздельной стабилизацией демонстрирует полное отсутствие каких-либо завышений напряжений, а групповая стабилизация ... примерно 12.8 вольта. Скорее всего, мера этого завышения как-то связана с конкретными особенностями моделей блоков разных производителей, поэтому я бы сделал следующий вывод:

Раздельная стабилизация - полная гарантия от импульсов высоких напряжений;

Групповая стабилизация - потенциально возможно, давайте смотреть каждую модель отдельно.

Устойчивость к помехам в сети 220 вольт

Сеть питания не идеальной источник, в ней могут быть помехи. Данный способ тестирования востребован ГОСТ'ом, а потому включен в общее исследование.

По способу распространения, помехи делятся на два типа - дифференциальные (между двумя проводами питания) и синфазные (относительно земли).

Дифференциальные:

Aerocool Strike-X 800

Cougar CMX 700

Синфазные:

Aerocool Strike-X 800

Cougar CMX 700

 

Оба блока питания демонстрируют примерно одинаковую реакцию на помехи в сети и их характер поведения можно оценить как «нормально». При этом нет каких-либо особенностей в характере помех каналов 12 вольт и 3.3/5 вольт для различных топологий. Как же приятно, после всех предыдущих бед, когда оба БП проходят тест без каких либо замечаний.

Нестабильная сеть

Кроме помех, в сети довольно часто происходит другая неприятность - длительное снижение уровня. Нормы на сеть ограничивают ее диапазон границами 220В +10/-15%, но ничего не «мешает» получить у потребителя и большее и меньшее значение. Требования ГОСТ'а обязывают БП способным функционировать как в нормальном диапазоне (+10/-15%), так и выдерживать кратковременное снижение и завышение уровня. Раз есть требование, значит будет испытание:

Aerocool Strike-X 800

Cougar CMX 700

 

Оба блока питания прошли тест, и смена напряжения сети не отразилась на выходных напряжениях. Но стоит отметить неустойчивую работу блока APFC на CMX 700. Обратите внимание на голубой график тока правой диаграммы - форма тока потребления во времени далека от «стабильной». Очень плохой симптом. Strike-X 800 демонстрирует неизменный характер тока потребления, который меняется лишь в моменты смены напряжения сети.

Второй тест данного типа - монотонное снижение напряжения сети.

Aerocool Strike-X 800

Cougar CMX 700

 

CMX 700 опять отличился -  на выходе 3.3В зафиксирован импульс напряжения. Судя по большой амплитуде тока сети, в БП произошло следующее - последовал срыв цепи стабилизации APFC, что вызвало экстраток потребления. Далее этот импульс тока распространился как помеха из сети на сторону выходных напряжений и проявил себя на канале 3.3В. При проведении теста на время удержания сети (приведено выше) данный блок питания показывал заметный уровень проникновения помех сети в выходные напряжения, поэтому предложенное объяснение имеет под собой веские основания.

Как мне кажется, слишком рано выпустили этот БП в мир, он еще не дорос до этого и цепь стабилизации APFC явно нуждается в уточнении. Исправить легко, но только в производственных условиях. Довольно забавно, что под маркой «Cougar CMX 700» скрывается вторая версия этого блока питания.

Эффективность работы

Любимая характеристика, КПД. Ну как без нее?

Кроме измерения данного свойства приводятся напряжения на выходах 3.3/5/12, а само тестирование будет проводиться «до железки», пока блок питания не выключится. Это позволит оценить перегрузочную способность блока питания. Данный тест обязан проводиться быстро, иначе можно превысить условие кратковременности перегрузки, оговариваемой на блоки питания.

Выход 12В:

Aerocool Strike-X 800

Cougar CMX 700

 

Выход 5В:

Aerocool Strike-X 800

Cougar CMX 700

 

Выход 3.3В:

Aerocool Strike-X 800

Cougar CMX 700

 

Приведенные диаграммы частично повторяют ранее приведенные нагрузочные характеристики. И здесь так же хорошо видно, что чуда не случилось - блок питания с раздельной стабилизацией показывает не лучшие результаты. Точнее, здесь вообще нет победителя, «ничья».

Ток потребления сети:

Aerocool Strike-X 800

Cougar CMX 700

 

У CMX 700 гораздо «кривее» работа APFC, уж простите меня за столь нетехнический термин. Примерно нормальная форма тока получается лишь с половины мощности нагрузки. У Strike-X 800 с этим несколько лучше, видимые искажения пропадают примерно с 1/3 мощности нагрузки.

Переходим к самому интересному, КПД:

Aerocool Strike-X 800

Cougar CMX 700

 

Цифр много, они приведены на картинках. Если не придираться к мелочам, то можно сказать, что они одинаковые. Разница менее одного процента погоды не делает.

Эффективность в табличном представлении, все численные данные представлены в процентах:

Мощность нагрузки БП:

5%

10%

20%

50%

100%

Норма 80+

80 PLUS

-

-

80

80

80

 

80 PLUS Bronze

-

-

82

85

82

 

80 PLUS Silver

-

-

85

88

85

 

80 PLUS Gold

-

-

87

90

87

 

80 PLUS Platinum

-

-

90

92

89

 

80 PLUS Titanium

-

90

92

94

90

 

Aerocool Strike-X 800

70

80

86

88.6

86.4

80 PLUS Silver

Cougar CMX 700

75

83

86.8

88.1

85.5

80 PLUS Silver

 

Интересно, что Strike-X 800 номинируют как «80 PLUS Silver», а CMX 700 лишь «80 PLUS Bronze», хотя результаты тестирования представляют практически одинаковые цифры. Вот и верь в эту сертификацию.

Характеристика

Aerocool Strike-X 800

Cougar CMX 700

Максимальная мощность блока питания, Вт

1080

805

Перегрузочная способность, процентов

36

15

 

Хотя  данная мощность может быть получена только на непродолжительных перегрузках, но все равно 1080 Вт с 800 Вт блока питания - это воодушевляет.

Коэффициент мощности

Не сказал бы, что существует какая-то особая польза в исследовании данной характеристики блока питания. При достаточно высоком значении коэффициента мощности его дальнейшее улучшение представляет совсем низкую ценность. Сертификация 80+ характеризует коэффициент мощности величиной не менее 0.9 (0.95) только при половинной мощности нагрузки, что и выполнятся при исследовании:

      Aerocool Strike-X 800

      Cougar CMX 700

 

В принципе, оба блока питания не могут похвастаться идеальной формой, хотя само значение коэффициента мощности достаточно велико.

Дежурный источник

Как связан данный вопрос с различием в топологиях блоков питания? Конечно «никак», но мне надо набить знаки. Поэтому просто пропустите данный раздел, если не интересно. ))

Нагрузочная характеристика:

     Aerocool Strike-X 800

      Cougar CMX 700

 

Напряжение дежурного источник CMX 700 выдерживается значительно стабильнее Strike-X 800, да и перегрузочная способность несколько выше.

При измерении КПД в зачет идет только эффективность работы этого источника, фоновое потребление в блоке питания не учитывается.

      Aerocool Strike-X 800

      Cougar CMX 700

 

Некоторая «дерганность» характеристик вызвана наличием сглаживающего конденсатора очень большой величины на входе блока питания и низкой мощности потребления. Это затрудняет процесс измерения крайне «импульсного» тока потребления непостоянной величины во времени.

      Aerocool Strike-X 800

      Cougar CMX 700

 

Импульсная нагрузка:

Характеристика

Aerocool Strike-X 800

Cougar CMX 700

Изменение напряжения под нагрузкой, В

0.44

0.19

Мощность нагрузки 50%, КПД, процентов

77

79

Мощность нагрузки 100%, КПД, процентов

75

78

Перегрузочная способность, процентов

51

85

Импульсная нагрузка, величина пульсаций, В

0.2

0.15

 

По всем позициям полная и безоговорочная победа CMX 700. Случай редкий, а потому достойный похвалы.

Высокоэффективный процессор

Процессоры совсем недавно получили возможность эффективно уходить в режим сна с крайне малым уровнем потребления. Обычный блок питания не рассчитан на столь значительный диапазон мощностей нагрузки и может не обеспечить должное качество стабилизации выходных напряжений. Поэтому в тестирование введено ряд испытаний для проверки на совместимость с такими компьютерными системами.

Одна из «неприятностей», которая может произойти с БП - его отключение при сверхнизком токе потребления. В стандартах на блоки питания крайне низкое или полное отсутствие тока нагрузки объявляется нештатной ситуацией и разрешают блоку питания отключаться. Но добавление новых процессорных систем сдвинуло рамки нижней границы тока потребления и ряд БП оказался не в состоянии их обеспечить. Иначе говоря, на данный момент пока существуют блоки питания двух классов - способных работать с низким током потребления и не способных, отключающихся при снижении тока ниже порогового.  Первый тест состоит с постепенном уменьшении тока нагрузки на БП с «низких» (соответствует старым стандартам) до сверхнизких (новые редакции стандартов):

      Aerocool Strike-X 800

      Cougar CMX 700

 

Оба БП прошли тест, хотя должен обратить ваше внимание - CMX 700 опять «начудил» с током потребления сети. Нет, APFC там точно требует вмешательства.

Импульсная характеристика:

      Aerocool Strike-X 800

      Cougar CMX 700

 

Strike-X 800 - «отлично»,  CMX 700 - «нормально». Главное, что нет никаких срывов и «колебательных» процессов. Отдельные преобразователи 3.3/5 одерживают очевидную победу. При выборе системы с малопотребляющим процессором более разумно использовать именно такой тип топологии блоков питания. Одно лишь портит радостную картину - не окажется ли блок питания 800-1200 Вт для процессора 35-90 Вт чрезмерным «запасом»?

Система охлаждения

В данном разделе будет измеряться скорость вращения вентилятора, как более-менее адекватная характеристика работы системы охлаждения блока питания. Уровень шума, в «обычном» его понимании, более подходит для своего основного назначения, проверки соответствия санитарным нормам, и не может применяться для оценки акустической заметности блоков питания в составе системы. Впрочем, к теме статьи данный вопрос ни коем образом не относится и дается лишь в качестве дополнительного материала.

       Aerocool Strike-X 800

      Cougar CMX 700

 

У меня складывается ощущение, что в обоих блоках питания стоит одна и та же схема управления вентилятором и различается лишь модель самого вентилятора. Посмотрите сами - порог мощности одинаков, кривая регулирования тоже. А диапазоны скоростей - это уже больше от мотора вентилятора зависит.

Выводы

Качество работы блока питания очень мало зависит от его топологии. В нем может быть групповая стабилизация или отдельные преобразователи, получаемый итог будет примерно одинаков. По рекламе нам обещают невиданное качество напряжений в БП с раздельной стабилизацией, но это не более чем миф. Блок питания не такое уж и простое устройство и полное игнорирование разводки цепи «земля» производителями сразу сводит на нет все потенциальные возможности блоков с отдельными преобразователями 3.3/5 вольт. Увы, чуда не случилось.


Обсудить материал можно на Форуме или в наших группах ВКонтакте и Facebook.

Когда 1200=900. Обзор блока питания Aresze EPS 1200ELA

Блок питания Aresze «EPS 1200ELA» производится фирмой Aresze и относится к серии «Титан». Модельный ряд фирмы состоит из трех разделов:

  • «TITANS»: EPS 1500ELA (80+ bronze), EPS 1200ELA (80+ silver);
  • «ARES»:  EPS 850ELA (80+ bronze), EPS 600ELA (80+ bronze);
  • «PANDORA»: EPS 500ELA (85+), EPS 450ELA (85+).

Представленный на тестирование блок питания не самый мощный, но самый эффективный и находится в «элитарной» серии, что обещает его «демократическую» цену и вызывает повышенный интерес. Не зря же говорят - не берите «самое-самое-самое», для получения «самых» характеристик производители, как правило, тратят сверх- усилия, что несильно повышает потребительские качества, но крайне завышает цену устройства.

Упаковка и комплектация

Блок питания поставляется в обычной картонной коробке, но посмотрите на ее размер.

 

Блок питания Aresze EPS 1200ELA

По размеру сразу чувствуется, что это мощный блок питания.

Блок питания Aresze EPS 1200ELA

C обратной стороны:

Блок питания Aresze EPS 1200ELA

Открываем коробку:

 

Блок питания Aresze EPS 1200ELA

Блок питания кажется миниатюрным, хотя его размеры несколько больше стандартных – длина 200 мм. Комплект поставки:

Блок питания Aresze EPS 1200ELA

 

В состав поставки входят:

  • Блок питания Aresze «EPS 1200ELA»;
  • Сетевой кабель американского исполнения (115 В);
  • Набор съемных кабелей;
  • Две книжечки непонятного назначения (иероглифы);
  • Листок с характеристиками;
  • Пакетик силикагеля.

Из всего набора интерес представляет только блок питания и набор съемных кабелей, все остальное лишь элементы декора не несущие особого практического смысла Хотя, за наличие силикагеля сразу хочется поставить жирный «+», забота производителя о сохранности продукции достойна похвалы. 

С сетевым кабелем вышла промашка, видимо просто ошиблись с регионом поставки. Ну, сами посудите - использовать для стяжки кабеля не одноразовую проволочку, а неплохую липучку и ошибиться с типом соединителя - это явная случайность. Впрочем, «склонность» блока питания к сети 115 В стоит отметить особо.

Картинку спецификации приводить не смысла, она является полной копией страницы описания продукта на сайте Aresze.

Съемные кабели:

  • 4 SATA: 50 см + 15 см + 15 см + 15 см, 2 шт;
  • 4 PATA + 1 FDD:  50 см + 15 см + 15 см + 15 см + 15 см, 2 шт;
  • PCI-Express, 8 (6+2) + 6, 50 см, с ферритовыми фильтрами, 4 шт.

Фиксированные кабели на блоке питания:

  • Кабель к материнской плате 24 (20+4), 50 см;
  • Кабель питания преобразователя процессора 4+4, 50см, 2 шт.

Набор кабелей не плохой, но и сверх хорошим его тоже не назовёшь. Уж простите, после знакомства с «кабельным хозяйством» ранее рассмотренного блока питания Cougar «CMX 700», данный БП заслуживает оценки только на «хорошо». Если в «CMX 700» кабели периферии имеют разнотипный набор (различную комбинацию PATA и SATA соединителей), то в представленном БП Aresze на одном кабеле только разъемы одного вида. Хорошо ли это? Плохо, причем без вариантов. Если на кабеле будет «валяться» один лишний разъем PATA, то это никого не затронет, а вот необходимость задействовать целый кабель PATA (4 разъема), да еще и куда-то смотать его 95 см длины – это уже неприятно. Я понимаю, что PATA жесткие диски устройства исчезают из обихода, но остаются различные «гаджеты» (регуляторы вентиляторов, блоки индикации и контроля, просто интересные и полезные вещи), что делать с ними? Системный блок выглядит с ними совсем по другому, гораздо интереснее (и функциональнее). Так что, после Cougar «CMX 700» этому БП мне хочется поставить «-» за исполнение кабельного хозяйства. До сих пор речь шла о периферии, но стоит обратить внимание на кабели питания PCI-E, в которых на каждом кабеле два разъема. Это хорошо? Несомненно, вот только эти разъемы по формуле 8 (6+2) + 6, а современные видеокарты требуют 8 (6+2) + 8 (6+2). Ну и как, позвольте, я этими четырьмя кабелями подключу три-четыре видеокарты? Никак. Придется докупать переходники 6->6+2, которых «днем с огнем» не разыщешь в магазинах. Так что, по комплектации нарекания есть, уж простите за прямоту.

Спецификация

Воспользуемся данными с корпуса блока питания и прилагаемой документацией.

Блок питания Aresze EPS 1200ELA

Блок питания имеет четыре шины 12 вольт:

  1. (12v1) Два кабеля питания преобразователя процессора;
  2. (12v2) Напряжение 12 В для материнской платы;
  3. (12v3) Четыре разъема питания PCI-Express;
  4. (12v4) Напряжение 12 В периферийных устройств.

Мощность выходов 3.3 В и 5 В под стать классу блока питания, «выше обычного». Чаще всего современные БП по этим выходам обеспечивают 15-20 ампер. Впрочем, я не знаю как в не-серверном системном блоке можно набрать даже «15 А» по этим выходам, а потому столь высокие значения скорее дань уважения классу БП, чем реально востребованные характеристики. Но, «запас карман не тянет», если не «выйдет боком», конечно.

Блок питания Aresze EPS 1200ELA

В серии «TITANS» включает два блока питания, 1500 и 1200 Вт. Логично было бы предположить, что старшая модель получена «разгоном» младшей. Посмотрите спецификацию, размещенную на боковой стенке коробки:

Блок питания Aresze EPS 1200ELA

БП 1500 Вт может отдавать 40 А по выходам 3.3 / 5 В, а 1200 Вт только 25 А. Схожая ситуация с дежурным источником, 6 А против 3.5 А. Количество каналов 12 В сравнивать нет необходимости, всё равно они «виртуальные». В более мощном БП их декларируется 8 штук против 4 в менее мощном. Хотя, давайте разберемся, действительно ли более мощная модель существенно мощнее? Для старшей модели из 1500 Вт только 1320 Вт может быть снято с шины 12 В, а у младшей все 100 %, 1200 Вт. Вот и получается разница в приведенных блоках питания всего лишь 10 %. Одна и та же модель, с «разгоном»?  Увы. Корпус модели EPS1  5   00ELA длиннее EPS1  2   00ELA, да и разъемы расположены иначе:

 

Блок питания Aresze EPS 1200ELA

Нет, это разные блоки питания, а не результат «разгона».

Блок питания изнутри

Сторона вентилятора выглядит как-то скучно - черное и серое.

 

Блок питания Aresze EPS 1200ELA

Но все меняется, стоит только его включить:

 

Блок питания Aresze EPS 1200ELA

При ярком освещении подсветка выглядит как-то не впечатляюще, но внутри системного блока происходит примечательная метаморфоза:

 

Блок питания Aresze EPS 1200ELA

Статичные фотографии не отражают захватывающей красоты подсветки, она «переливается». К сожалению, сильное сжатие видео файла так же убивает эффект движения, но “хоть как-то” - посмотрите фрагмент.

Лично я крайне безразлично отношусь к «моддингу», но этот БП завораживает, он «живой». Подобный эффект не такая уж и редкость, но, встретив, каждый раз вызывает удивление.

На нижней стороне блока питания размещена таблица максимальных режимов:

 

Блок питания Aresze EPS 1200ELA

Что удивительно, все цифры совпадают с теми, что представлены на странице описания продукта. Поясняющий текст проверить не удается, иероглифы, знаете ли.

Передняя сторона выглядит обычно.

 

Блок питания Aresze EPS 1200ELA

Но почему они решили написать текст на английском «вверх ногами»?

Обратная сторона блока питания:

 

Блок питания Aresze EPS 1200ELA

Разъемы питания PCI-Express выглядят обычно, а вот с периферией какая-то несуразица. Зачем надо было склеивать разъемы попарно? Это же снижает удобство при установке сбоку (как оно обычно и происходит). К тому же защелка верхнего (по картинке) разъема располагается у самого края, что может вызвать проблемы при отключении. Впрочем, в существенные недостатки это записывать не будем, может дело в привычке и на самом деле так окажется удобнее.

В верхней крыше блока питания расположен крупный вентилятор класса «140 мм»:

 

Блок питания Aresze EPS 1200ELA

Вентилятор с прозрачными лопастями. Но не всё так просто, давайте взглянем на него поближе:

Блок питания Aresze EPS 1200ELA

Лопасти не просто полупрозрачные, а еще и с микрорассеивающей формой поверхности. Возможно, именно этим вызван эффект «движения потока» при вращении вентилятора. Приятная забота о мелочах. Кстати, она проявляется не только в вентиляторе и его подсветке, но и в самом шероховатом покрытии корпуса. И даже такой мелочи, как специально подобранный черный пластик с вкраплением серой «пыли» на разъеме питания и выключателе - для имитации схожей фактуры поверхности. Посмотрите сами:

Блок питания Aresze EPS 1200ELA

Впрочем, вернемся к вентилятору. Он производится фирмой «YOUNG LIN TECH CO.», модель «DFB132512H» {другая модель}.

  • Напряжение питания 12 вольт;
  • Мощность 3 Вт;
  • Скорость вращения до 1700 об/мин.

Если крышку снять, откроется следующая картина:

 

Блок питания Aresze EPS 1200ELA

Основные элементы блока питания:

  1. Два выпрямительных моста, с небольшим дополнительным радиатором;
  2. Два транзистора APFC;
  3. Выпрямительный диод APFC;
  4. Дроссель APFC;
  5. Два конденсатора APFC – 330 мкФ 450 В, серия KMT;
  6. Два транзистора основного преобразователя;
  7. Дежурный источник 5 вольт, микросхема STR-A6062H;
  8. Силовой трансформатор на ферритовом сердечнике типоразмера ERL-39;
  9. Синхронный выпрямительный узел канала 12 вольт на 5 MOSFET;
  10.  Модуль преобразователя 12 -> 5 В;
  11.  Модуль преобразователя 12 -> 3.3 В;
  12.  Плата управления;
  13.  Плата выходных разъемов.

В блоке питания использованы электролитические конденсаторы японской фирмы Nippon.

 

Блок питания Aresze EPS 1200ELA

Другой ракурс:

 

Блок питания Aresze EPS 1200ELA

Топология блока питания построена по обычной схеме для этого класса блоков питания: APFC + однотактный прямоходовой преобразователь (косой мост) с одним выходом 12 В и синхронным выпрямителем + два отдельных DC/DC модуля на выходы 5 и 3.3 В.

Обычно в БП несколько плат с контроллерами, здесь же установлена лишь одна, зато во всю длину блока питания:

 

Блок питания Aresze EPS 1200ELA

Микросхемы, слева направо:

  • PS232 - контроль выходных напряжений и токов нагрузок;
  • PC123 - обычные оптопары, ничем не отличающиеся от «типичных» '817';
  • UC2715 - контроллер синхронного выпрямителя;
  • CM6802S - схема управления основным преобразователем и APFC;
  • CM03x - примитивный коммутатор цепей измерения выпрямленного напряжения сети. Устанавливается исключительно для снижения тока разряда сглаживающего конденсатора в выключенном состоянии БП. Смысла в этой микросхемы крайне мало и довольно часто ее просто не монтируют.

На той же плате размещен узел управления вентилятором с термодатчиком, размещенном на радиаторе:

 

Блок питания Aresze EPS 1200ELA

В блоке питания имеется еще один небольшой источник, это т.н. «дежурный источник» 5 В, выполненный в интегральном исполнении на микросхеме STR-A6062H.

По спецификации, БП по этому выходу обеспечивает ток нагрузки до  3.5 ампера (17.5 Вт), по данным изготовителя микросхемы только 15 Вт. Гм, неожиданно.

Плата выходных разъемов, вид сзади:

 

Блок питания Aresze EPS 1200ELA

На плате установлено несколько электролитических конденсаторов, но «погоды» они не делают. Исследование предыдущего блока питания, «Cougar CMX 700», показало, что наличие или отсутствие сглаживающих конденсаторов на плате выходных разъемов если и сказывается на уровне помех, то крайне незначительно.

Тестирование

Блок питания исследовался по методике, изложенной в статье тестирования блока питания Aerocool Strike-X 800, опубликованной ранее с дополнением по измерению теплового режима и эффективности блока питания.

Вы можете загрузить полный отчет по следующей ссылке, а на блок питания Aerocool «Strike-X 800» по этой. К сожалению, для эмулятора сети настолько высокая мощность оказалась «не по зубам», поэтому измерение характеристик блока питания Aresze EPS 1200ELA проходило как БП на 800 Вт. Вообще-то, тестовый стенд может испытывать блоки питания до 900 (1000) Вт и снижению предельной границы должно быть какое-то разумное объяснение.

 

Блок питания Aresze EPS 1200ELA

В качестве образца сравнения выбран блок питания Aerocool «Strike-X 800», и вовсе не случайно - в нём используется аналогичное схемное решение и даже контроллер почти такой же (CM6800). Давайте посмотрим на некоторые измеренные характеристики двух блоков питания:

Параметр

Aerocool Strike-X 800

Aresze EPS 1200ELA

Выходное сопротивление канала 12 В, мОм

7.1

8.9

Выходное сопротивление канала 5 В, мОм

3.8

1.6

Уровень нестабильности канала 12 В, вольт

0.44

0.26(*)

Уровень нестабильности канала 5 В, вольт

0.14

0.07(*)

КПД при мощности нагрузки 10 %, %

79.4

83.3

КПД при мощности нагрузки 20 %, %

85

88.5

КПД при мощности нагрузки 50 %, %

89.1

90.5

КПД при мощности нагрузки 100 %, %

87

~87.6

Максимальный ток потребления, А

6.4

~11

(*) Примечание: Блок питания тестировался с ограничением по мощности и данный параметр сильно занижен. Действительное значение для всего диапазона мощности БП   Aresze «EPS 1200ELA» примерно в 1.5 раза выше.

Все данные похожи, если не лезть в подробности. С одной стороны, у 1200ELA меньше уровень нестабильности, но после пересчета в 1.5 раза результаты получаются «близкими». А вообще, если говорить честно, БП Aresze выигрывает почти по всем позициям. Увы, только «почти», выходное сопротивление у него больше. А теперь давайте учтем, что Aresze на бо’льшую мощность, причем значительную – в 1.5 раза! Для получения «схожих» результатов у него должно быть выходное сопротивление в 1.5 раза ниже, чем у БП Aerocool, а здесь и без «пересчета» выше. Очень плохо, следует разобраться! Повторюсь, выходное сопротивление характеризует величину снижения выходного напряжения по мере увеличения тока нагрузки. Чем меньше эта характеристика, тем стабильнее напряжение на выходе.

Вторая группа тестов.

Как и протестированные ранее блоки питания, данный БП проходил тесты 1-4 при мощности нагрузки 90% от максимальной.

Aerocool Strike-X 800    

Режим

Пиковый ток

КПД

Помехи: CPU

Помехи: GPU

Помехи: VGA-RAM

Помехи:  5В

1: 220Vac sinus

5.8 А

87.9 %

0.023 В

0.01 В

0.01 В

0.009 В

2: 220Vac meander

10.7 А

87.5 %

0.06 В

0.01 В

0.01 В

0.01 В

3: 187-242V

10.9 А

-

0.028 В

0.014 В

0.013 В

0.011 В

4: 220V failure

18.8 А

-

0.031 В

0.016 В

0.061 В

0.011 В

HDD emulation

2 А

-

0.096 В

0.087 В

0.085 В

0.013 В

Максимальное время отсутствия сети 0.018 сек.

Aresze EPS 1200ELA    

Блок питания тестировался на   800    Вт, вместо 1200.

Режим

Пиковый ток

КПД

Помехи: CPU

Помехи: GPU

Помехи: VGA-RAM

Помехи:  5В

1: 220Vac sinus

6.1 A

90.3 %

0.028 В

0.019 В

0.018 В

0.01 В

2: 220Vac meander

7.6 А

89.7 %

0.029 В

0.014 В

0.014 В

0.011 В

3: 187-242V

11.5 А

-

0.036 В

0.023 В

0.023 В

0.012 В

4: 220V failure

13.2 А

-

0.034 В

0.021 В

0.021 В

0.01 В

HDD emulation

2.6 А

-

0.028 В

0.018 В

0.018 В

0.012 В

Максимальное время отсутствия сети 0.006 сек.

В этой группе тестов токи нагрузки по каналам поддерживаются на неизменном уровне, поэтому все пульсации и нестабильности вызваны «внутренними» проблемами основного преобразователя, узла APFC и системы фильтров. Давайте посмотрим различия в поведении блоков питания по разным тестам группы.

Первый тест - работа от сети.

В этом случае устанавливается «обычное» напряжение сети 220 вольт частотой 50 Гц, форма «синус». По цифрам – Aresze 1200 проигрывает в 1.5 раза. Если Strike-X обеспечивает уровень пульсаций порядка 0.013 В, то «EPS 1200ELA» уже 0.019 В. На графиках это выглядит следующим образом:

 

 

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

 

 

Однако это простой высокочастотный шум, низкочастотные колебания от выпрямленного напряжения сети отсутствуют.

Как и во всех других сравнениях, графики Strike-X будут размещаться слева, а тестируемого блока питания справа.

Второй тест – работа от UPS.

При замене синусоидальной формы напряжения на прямоугольную, уровень пульсаций «EPS 1200ELA» почти не изменяется, по сравнению с первым тестом, что говорит о высоком качестве стабилизации основного преобразователя.

Третий тест – нестабильная сеть.

Уровень помех несколько возрос, но это сущие пустяки. Блок питания показывает хорошую степень подавления помех из сети 220 вольт.

Тест четыре - проверка на кратковременное отсутствие сети.

Подобный дефект энергоснабжения довольно распространен, кроме того, переключение на батарейное питание в бесперебойном источнике так же вызывает схожее кратковременное отключение. БП «EPS 1200ELA» смог выдержать ”без сети” только 6(!!!) мс, что недопустимо мало. К сожалению, я не могу исключить кратковременную перегрузку эмулятора сети, который работает на пределе возможностей, поэтому к результатам этого теста следует отнестись осторожно и в последствии я попробую разобраться в вопросе.

Тест «HDD emulation».

На данном этапе эмулируется импульсный ток потребления жесткого диска. При разгоне и/или перемещении позиционера HDD дает мощную импульсную нагрузку по питающему источнику 12 вольт. В данном тесте используется токовая нагрузка величиной 2 ампера и длительностью 1 мс. Место подключения – разъем PATA (Molex), что характерно для жестких дисков.

Aerocool «Strike-X 800», выход 12 вольт (слева) и 5 вольт (справа):


Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

 

Aresze «EPS 1200ELA», выход 12 вольт (слева) и 5 вольт (справа):

 

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

 

На  выходе 12 В если «что-то» с явным трудом наблюдается, а по выходу 5 В это «что-то» заметить уже крайне сложно. БП Aresze прошел этот тест «с честью», без каких-либо замечаний.

PF или COS()

Уровень Cos() не измеряется, ибо это никому не нужно, но осциллограммы посмотреть можно. В характеристиках блока питания Aresze «EPS 1200ELA» указан PF>0.99, что-то у меня вызывает отчаянные сомнения.

10 %

 

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

 

25%

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

 

50 %

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

 

100 % (для блока питания Aresze «EPS 1200ELA» - 800 Вт, 67%)

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

По мере повышения мощности PF улучшается, но «EPS 1200ELA» явно «отстает» в скорости улучшения. Производитель обещал, цитирую страницу описания продукта,  «Активный PFC (> 0,99)». При мощности нагрузки 50% получено следующее значение:

Блок питания Aresze EPS 1200ELA

Для 900 Вт PF улучшается до 0.953. Разгадка кроется в картинке, размещенной на приведенной выше странице описания продукта:

 

 

Блок питания Aresze EPS 1200ELA

Измерения производятся для напряжения сети 115 вольт. На то же «намекает» комплектный кабель питания, он под американский формат. Эти измерения абсолютно нормальны и полностью соответствует стандарту, только они так же абсолютно «фиолетовы» для потребителя. На территории бывшего СССР, как и на практически всей Европы, существует только сеть электропитания 220 (230) вольт. Не могу не оценить правильность тестирования блоков питания в формате «USA», при продаже БП в других странах.

Гм. Что же, подведем небольшой итог - блок питания Aresze «EPS 1200ELA» спроектирован под американский формат сети, что приводит к заниженному значению PF (что не существенно) и увеличению «агрессивности» блока APFC. Последнее крайне важно, ведь при «переходных» режимах БП чрезмерно активно нагружает сеть. Последнее «свойство» привело к снижению мощности эмулятора сети тестового стенда и, вполне очевидно, крайне негативно скажется на работе данного БП через бесперебойный источник питания. Я бы посоветовал и не пытаться подключать данный БП через UPS, если он без достааааааааточной мощности. (надо бы добавить еще парочку «а»).

Уровень помех

Нагрузочные характеристики измерены, теперь давайте посмотрим блок питания другими инструментальными средствами. На рисунках будут показаны напряжения на выходе 12 В и 5 В. Первый график желтого цвета, второй голубого. Левая и правая картинка  отличаются частотным разрешением.

Aerocool «Strike-X 800»  

Без нагрузки.

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

Статическая нагрузка, мощность 600 Вт.

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

Aresze «EPS 1200ELA»  

Без нагрузки:

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

Статическая нагрузка, мощность 900 Вт.

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

При сравнении осциллограмм прошу учесть изменения масштаба по «Y» в два раза («Strike-X» х50 мВ, «1200 ELA» х20 мВ).

Если не вдаваться в тонкости, то оба блока питания показывают одинаковые результаты.  Только у «Strike-X 800» помехи представлены одинокими всплесками по фронтам импульсов коммутации, а у «1200 ELA» присутствует еще и пульсации с частотой преобразователя. Впрочем, их уровень не велик, а потому не вызывает опасений.

Проверка на генераторе помех сети 220 В

Для исследования влияния помех в сети 220 вольт на качество работы блоков питания имеется небольшой стенд, генерирующий два вида помех – дифференциальные и синфазные.

Дифференциальные помехи.

Подобный вид помех возникает между двумя питающими проводами сети 220 вольт. В домашних условиях их источником является коммутация очень мощной нагрузки, например электрочайника или компрессора холодильника. Протестируем на блоках питания с напряжением помехи 240В.

Aerocool «Strike-X 800»  

Слева картинка для не нагруженного блока питания, справа – 600 Вт.

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

Aresze «EPS 1200ELA»  

Слева картинка для блока питания без нагрузки, справа – 600 Вт.

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

 

В обоих блоках питания дифференциальная помеха вызывает примерно одинаковую величину импульса на выходных напряжениях, но у «EPS 1200ELA» процесс более спокойный, что указывает на лучшую работу схемы стабилизации основного преобразователя. Что до узла APFC, то, похоже, в обоих БП они ведут себя одинаково.

Синфазные помехи.

Этот тип помех возникает между землей и двумя выводами питающей сети, а потому их механизм и способы распространения отличаются от ранее рассмотренных дифференциальных помех, что требует отдельного исследования. Выключенный БП слева, нагруженный (600 Вт) справа.

Aerocool «Strike-X 800»  

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

Aresze «EPS 1200ELA»  

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

Как мне кажется, у БП «EPS 1200ELA» с синфазными помехами дела обстоят гораздо лучше, «раза в два» по амплитуде помехи и отсутствии «колебательности» в ее форме.

HDD emulation

Это контрольный тест, который дублирует ранее проведенное тестирование. Но здесь есть одна особенность – наблюдение с помощью осциллографа позволяет рассмотреть мелкие подробности, скрытые довольно грубыми приборами блока нагрузок. Тест выполняет импульсную нагрузку по выходу 12 В разъема PATA (Molex), током 2 ампера и длительностью 1 мс. Нагрузки блока питания – равномерная по выходам, статическая, 600 Вт.

Aerocool «Strike-X 800»  

Блок питания Aresze EPS 1200ELA

  Aresze «EPS 1200ELA»  

Блок питания Aresze EPS 1200ELA

Уровень помехи значительно ниже (в 2.5 раза), переходной процесс «спокойный», отсутствует какой либо вид колебательного процесса. Характер поведения БП нормальный, никаких специальных доработок не требуется.

Ток короткого замыкания

Блок питания Aresze «EPS 1200ELA»  имеет явное разделение шины 12 В на четыре канала, но схемная реализация этих каналов одинакова и можно осуществить измерение характеристик на любом из них. В данном случае используется выход 12V4 для питания периферии.

Для получения короткого замыкания используется шлейф-удлинитель PATA, который подключается к самому дальнему разъему Molex блока питания и замыкается с помощью тумблера.

Слева 12 вольт, справа тест для выхода 5 вольт. Блоки питания нагружаются на 250 Вт.

Aerocool «Strike-X 800»  

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

 

  Aresze «EPS 1200ELA»  

Блок питания Aresze EPS 1200ELAБлок питания Aresze EPS 1200ELA

Параметр

Strike-X 800

1200ELA

Ток КЗ канала 12 В, ампер

100

60

Время выключения при КЗ канала 12 В, мс

12

13

Ток КЗ канала 5 В, ампер

60

50

Время выключения при КЗ канала 5 В, мс

28

0.7

У блока питания Aerocool «Strike-X 800» отсутствует разделение на каналы, поэтому ток короткого замыкания выше, и дольше, если обратить внимание на выход 5 В. В целом, схемное решение без объединения каналов, реализованное в БП Aresze «EPS 1200ELA», дает лучшие результаты, и это при 1.5-кратном возрастании выходной мощности блока питания.

КПД

Для данного блока питания снять полный график представляется крайне сложным из-за возможной перегрузки эмулятора сети, а потому придется довольствоваться несколько упрощенным вариантом - с пересчетом 800 Вт тестирования в 1200 Вт реальной мощности БП.

 

Блок питания Aresze EPS 1200ELA

 

Блок питания смог пройти тест только до 1040 Вт (предположительно, по вине тестового стенда), что вызывает трудности в переводе значений, особенно для «100 %» - придется воспользоваться экстраполяцией.

Процент нагрузки БП

Заявленное значение, %

Измеренное, %

10

80.68

83.3

20

86.56

88.5

50

88.09

90.5

100

83.81

~87.6

Полученные данные весьма существенно превышают заявленные, но полученная разница, скорее всего, вызвана различием в методики измерения – «заявленные» данные приведены при питании блока питания от сети 115 вольт, а «измеренные» - при обычной сети в 220 вольт. При переходе от одной сети к другой требования сертификации «смещаются» на 1-1.5 процента, поэтому можно сказать, что полученные результаты совпали с заявленными. Полный отчет тестирования по спецификации 80+ можно получить по этой ссылке. К сожалению, продукция Golden Field Industrial Co., Ltd(DG) проходит сертификацию только по разделу 115 В.

Впрочем, у блока питания неплохие результаты по эффективности, может «примерим» цвет?

Процент нагрузки БП

Измеренное, %

80+ Bronze, %

80+ Silver, %

80+ Gold, %

10

83.3

-

-

-

20

88.5

81

85

88

50

90.5

85

89

92

100

~87.6

81

85

88

Блок питания Aresze «EPS 1200ELA» с хорошим запасом выполняет требования «80 PLUS Silver» и предъявляет серьезные заявки на «80 PLUS Gold».

 

Вентилятор и тепловой режим

Динамические и статические характеристики блока питания представлены выше, осталось лишь посмотреть уровень шума и тепловые режимы. Последнее не представляет особого интереса для потребителя, ведь уровень нагрева отдельных частей блока питания не сказывается на работе компьютера, но посмотреть их стоит – странно низкая или слишком высокая температура говорит о качестве проектирования БП и позволит оценить срок его наработки. К сожалению, тестовый стенд очень «шумный», а потому вместо уровня шума вентилятора будет представлена скорость его вращения.

При измерении характеристик БП подключался непосредственно к сети 220 В, что исключало ограничения эмулятора сети тестового стенда. К сожалению, блок питания вызывал отключение при мощности нагрузки свыше 1000 Вт. Подробнее этот вопрос будет исследован в следующем разделе.

Вентилятор:

Блок питания Aresze EPS 1200ELA

До половины нагрузки вентилятор крайне незначительно повышает обороты, а после этого порога следует довольно резкое увеличение скорости вращения. Уровень шума не измерялся, но сам характер шума вентилятора образован флуктуациями воздуха с легким металлическим гулом. «Электрический» шум отсутствует - нет ни писка, ни стрекота.

Температура в БП:

Блок питания Aresze EPS 1200ELA

Прошу учесть, что  под «температурой» понималась мера перегрева по отношению к комнатной (23 градуса).

Самый горячий элемент - трансформатор. А самый холодный - радиатор APFC. Это говорит о неоптимальном построении модуля APFC, его явную направленность на сеть 110 В. Как следствие, его чрезмерную «агрессивность» при питании от обычной сети 220 В. Собственно, это и мы и получили во время тестирования. Что до самих температур, то исследование предыдущего блока питания показало схожие закономерности, а потому не кажется чем-то необычным и не вызывает беспокойства.

Доработки и изыскания

Блок питания Aresze «EPS 1200ELA» не смог обеспечить даже номинальную мощность, так что ни о каких «улучшениях» и речи идти не может – будем заниматься только этой проблемой.

Тестирование показало отключение БП на пороге 1000 Вт, что явно меньше номинальной величины (1200 Вт). К слову, в этом мог бы быть виноват стенд, а именно «эмулятор сети», который не рассчитан на столь высокие значения, но и прямое подключение к сети 220 В показало аналогичную величину.

Давайте вернемся к первоистокам, спецификации на БП:

 

 

Блок питания Aresze EPS 1200ELA

 

Блок питания имеет четыре шины 12 вольт:

  1. Два кабеля питания преобразователя процессора;
  2. Напряжение 12 В для материнской платы;
  3. Четыре разъема PCI-Express;
  4. Напряжение 12 В периферийных устройств.

Эта информация получена из обследования кабельного хозяйства, а потому соответствует действительности. Итак, имеется четыре «шины», с каждой из которых можно снимать до 40 ампер, при суммарной 100 А. Пока всё здорово, но давайте же, наконец, найдем причину, почему только 1 кВт? Тестовый стенд эмулирует обычный, «типовой» системный блок, куда будет устанавливаться наш блок питания. Это логично и, надеюсь, все вы с этим согласитесь. Для игрового компьютера … или, скажем более смягченно, не «серверного», обычная конфигурация состоит из одного процессора, небольшой дисковой системы (например 1 SSD и 1-2 HDD) и одной-нескольких видеокарт.  Система может работать в «номинальном» режиме или быть «разогнанной», но экстремальные способы разгона не являются «типовыми». Вряд ли такой уж большой процент покупателей БП будут использовать разгон под «жидким азотом». Конечно, никто не мешает применять данный БП и в «экстраординарных» конфигурациях, просто придется немного перераспределить мощность - при сверхнизких  температурах часто следует сильно повышенное напряжение и частота процессора, что до «в разы» увеличивает мощность нагрузки на блок питания по этому каналу 12 В.

Если перейти к цифрам, то получаются примерно следующие «типичные» мощностей нагрузок для системного блока «большой мощности»:

  • Канал 5 В и 3.3 В - в сумме 40…60 Вт;
  • Процессор - 150…300 Вт, в зависимости от характера выполняемой задачи и меры разгона;
  • Материнская плата: системная память, контроллеры, диски (12 В) – 40-50 Вт;
  • Видеосистема - несколько видеокарт высокой производительности.

При распределении нагрузок следует учесть, что «наибольшая» мощность какого-то элемента не совпадает с максимум потребления других – в разных режимах нагрузка между устройствами перераспределяется. В тесте памяти легко получить высокий нагрев модулей DIMM, но во время выполнения Linpack или обычных приложениях создать даже близкую температуру окажется крайне проблематичным.

Давайте возьмем наиболее подходящую целевую группу для нашего блока питания и посмотрим, что можно собрать. Сам БП очень мощный, поэтому стоит взять одну из  самых производительных платформ. На текущий момент это системы на Intel LGA 2011 (или аналогичная от AMD). Данные платы поддерживают установку 6-ядерных процессоров Sandy Bridge-E и четырех видеокарт высшего региона производительности. Что же, попробуем «подключить». Типичными устройствами будут следующие:

Название компонента

Номинальный режим, мощность потребления, Вт

Не экстремальный разгон, мощность потребления, Вт

Тип соединителя, контактов

Процессор Sandy Bridge-E

80-150

150-200

8

Видеокарта NVIDIA GTX 690

350

400

8+8

Видеокарта AMD Radeon HD 6990

380

420

8+8

Видеокарта AMD Radeon HD 7970

220

260

8+8

Видеокарта AMD Radeon HD 6970

220

260

8+8 или 8+6

Видеокарта AMD Radeon HD 6950

180

230

6+6

Цифры даны весьма условно, ведь разброс характеристик и особенностей устройств может сильно различаться. Кроме того, я привел далеко не весь спектр существующих видеокарт обеих производителей, но сами тенденции по мощности потребления прослеживаются достаточно единообразно:

Условное обозначение

Характеристика

Примеры

TOP

Видеокарта наибольшей производительности, с применением GPU без блокировки конвейеров.

AMD Radeon HD 7970, 6970; NVIDIA GTX 680, 580

TOP-

Производительность несколько снижена, отключено ряд исполнительных конвейеров, но GPU тот же, что и у «TOP».

AMD Radeon HD 7950, 6950; NVIDIA GTX 670, 570

TOPx2

Состоит из двух GPU типа «ТОР» со слегка сниженной производительностью из-за пониженного напряжения питания графических процессоров от чрезмерно высокого тепловыделения. Разгоняется очень плохо.

AMD Radeon HD 6990, 6990; NVIDIA GTX 690, 590

Используя приведенные характеристики для типичного применения исследуемого БП я применил следующую логику установки мощности нагрузки в диапазоне 800-1500 Вт :

  • 5 В = 50 Вт;
  • Процессор 12 В = 250 Вт;
  • Видеокарты 12 В = 0 … максимум.  

Такое построение позволяет эмулировать различный объем видеосистемы (количество и класс видеокарт). Как недостаток, хочу отметить отсутствие небольшой нагрузки по каналу 12 В материнской платы и периферии, что составляет цифру порядка 50 Вт и, согласитесь, полностью «исчезает» на фоне общего потребления системы (напоминаю, 1200 Вт).

Наверно вы подумали, зачем же автор написал столько ненужных слов, если у него БП не работает? Увы, всё сказанное сейчас и пригодится. Для эмуляции нагрузки типа «видеокарты» использовались подключение питания через PCI-E. Пока ток нагрузки по этим выходам не превышал 59 ампер (29.5 А по двум нагрузкам) БП работал нормально. Стоило лишь чуть-чуть превысить этот порог и блок питания выключался. Считаем мощность: 5В=50 Вт, процессор 250 Вт, видеокарты 11.98*59=707 Вт. Итого 1007 Вт. Интересно, что тестовый стенд выдал примерно такой же результат (1044 Вт). Итак, «вину» стенда снимаем, причина в самом БП. Но в чём именно? Для этого пришлось открыть БП и заняться исследованием трассировки платы. Посмотрите сами:

 

Блок питания Aresze EPS 1200ELA

На картинке отмечены выходы «каналов» 12 В, слева направо:

  • 12v2 - материнская плата;
  • 12v1 - процессор;
  • 12v3 - PCI-E;
  • 12v4 – периферия 12 В.

Наличие датчиков тока просматривается очень четко, токовое ограничение стоит по каждому каналу. Ну вот и всё. Выход на разъемы PCI-E выполняется с одного канала (12v3), что ограничивает максимальную величину тока 40 амперами. У меня токовая защита срабатывает на пороге 59 А, что обеспечивает должный запас прочности. При этом следует учесть, что, по спецификации, по выходам питания PCI-E можно отвести не более 40 А, или 12*40=480 Вт.

Если подставить это значение в типовую конфигурацию, то получим максимальную мощность БП не более 480 (видеокарты) + 250 (процессор) + 100 (материнская плата + диски) = 830 Вт.

Наверно, в чем-то я ошибаюсь – не может же солидная фирма выпустить блок питания, который нельзя использовать выше 2/3 мощности! Проверим логику еще раз, но с обратного конца – нагрузок по каналам.

  • Выход PCI-E = 40 А, это без вариантов;
  • Выход 12 В питания процессора. Один процессор, даже в самом тяжелом случае (Linpack AVX, последний Prime95) потребляет не выше 300 Вт, т.е. 25 А. (Мы договорились брать только используемые решения, о «криогенном» разгоне или многопроцессорной системе речи не идет);
  • Материнская плата и дисковая система - у обычного пользователя нет шкафов с дисками, да и контроллеры на основной плате потребляют крайне мало, тоже касается системной памяти. Мощность потребления по этим цепям при небольшом количестве дисков (2-3), в сумме, не превышает 100 Вт.

Последний пункт относится к каналам 12v2 (материнская плата) и 12v4 (периферия).

Если всё просуммировать, то не получится даже 1000 Вт. Что же получается у пользователя данного БП? Шина питания PCI-E ограничена током 40 А, остается подключиться к выходам периферии с помощью переходников 8-контактных переходников «PATA» - «PCI-E»:

 

 

Блок питания Aresze EPS 1200ELA

Представляю радость того, кто будет этим заниматься, особенно при «модульном» БП. К слову, переходники на «8» встречаются очень редко, а потому придется использовать 6-контактные. И как, позвольте вас спросить, вы им запитаете видеокарту с 8х разъемом? В недостающих двух контактах находится датчик признака мощности источника питания, и при его отсутствии видеокарта вправе просто отключиться.

Остается одно - БП требуется доработка. Именно требуется, а не «желательна». Иначе вы просто не сможете его использовать на полную мощность.

Варианты исправления:

  1. Заблокировать локальные защиты по каналам, оставив только общую;
  2. Сделать свой, дополнительный кабель питания PCI-E из слабонагруженных шин 12v2 (материнская плата) и 12v4 (периферия);
  3. Объединить цепи 12v3 (PCI-E) и 12v4 (периферия).

Думаю, вначале стоит описать способы исполнения этих вариантов и достоинства/недостатки от такой реализации.

  Первый вариант.  

Заблокировать локальные защиты можно традиционным образом - просто перемкнув выходы по каналам после датчиков тока. Например так:

 

Блок питания Aresze EPS 1200ELA

На картинке фиолетовой линией обозначено место припайки толстой медной проволоки (1.2-1.5 мм). Процедура простая с хорошо предсказуемыми результатами, а потому практически проверяться не будет. И так понятно, что снимется ограничение на 59 А по выходу PCI-E, но какой ценой? Блок питания может обеспечить 100 А по выходу 12 В, и это без учета обязательного запаса на перегрузку. Получается очень много и если произойдет «неполное» короткое замыкание, то БП вполне может не отключиться с последующим «фейерверком». Это очень большая мощность и такое решение проблемы весьма опасно!

  Второй вариант.  

Дополнительный кабель довольно прост в реализации, но крайне неприятен в исполнении. Блок питания «компактный», выходных проводов много и они жесткие - всё это не доставляет радости. Но, этот способ решения проблемы не ухудшает характеристики БП, как это было в первом варианте, а потому его стоит опробовать. Кроме того, подобный кабель гарантированно будет использоваться – у него должны быть лучшие характеристики, чем у «съемных», да и хоть одна видеокарта обязательно будет присутствовать в компьютере. Для выполнения доработки требуется мощный паяльник, что само собой выходит из требований пайки сильноточных элементов. Так же крайне желателен припой и флюс, но это тоже очевидно и прямо подразумевается. Для начала следует собрать кабель питания, для чего я взял шлейф к материнской плате от другого БП:

 

Блок питания Aresze EPS 1200ELA

Я использовал все провода, 16 штук, хотя можно было бы ограничиться и восьмью с небольшим «хвостиком» под второй разъем 8(6+2). Исходил я из того, что к «полным» 16 контактам (два по 8) всегда можно приделать «хвостики» с еще двумя разъемами 8.

Следующая стадия – переборка разъема. Для этого лучше использовать «готовые» переходники «PATA» - «PCI-E», типа такого:

 

 

Блок питания Aresze EPS 1200ELA

Их потребуется три штуки – два по прямому назначению, а третий под распилку на добавочные 2-контактные хвостики. Есть и альтернативный вариант - распилить разъем к материнской плате от ненужного БП. Саму разборку лучше производить с помощью иголки. Для чего следует ее плотно воткнуть в контакт с одной стороны:

 

Блок питания Aresze EPS 1200ELA

… а затем переткнуть с противоположной (и не вынимать). При этом произойдет выпрямление «усиков» и снизится шанс их замятия при вытаскивании. После этого следует с силой вытащить контакт разъема за остаток провода. Затем потребуется повторить эту процедуру с остальными контактами. Процесс разделки и припаивания новых проводников я опускаю, это довольно просто, и хочу отметить лишь два момента -  вначале не забудьте выпрямить «усики» и, при установке обращайте внимание на ориентацию контакта в разъеме – там есть «направляющие».

После переборки кабель выглядит следующим образом:

 

Блок питания Aresze EPS 1200ELA

Остается его только подключить. Для чего из платы выпаивания по одному жгуту из выходов 12v2 и 12v4:

 

Блок питания Aresze EPS 1200ELA

Далее шины 12 В из новоявленного кабеля питания PCI-E очищаются от изоляции и скручиваются в два жгутика. К ним припаиваются провода, только что снятые с БП. После чего полученные соединения следует обмотать изоляционной лентой (или надеть термоусадку) для исключения появления «волосков», вставить в отверстия 12v2 и 12v4 и хорошо пропаять. Цепь «земля» дополнительного кабеля припаивается с противоположной стороны от «кучи» проводов, прямо в нахлест. Не очень технологичное решение, зато простое и надежное.

Остается понять, был ли смысл от этой «ерунды». После доработки измерение характеристик БП было повторено и Вы можете загрузить полный файл отчета по ссылке.

Довольно глупо ожидать улучшение «динамических» характеристик, а вот статические претерпели существенные изменения:

Параметр

Оригинальное

После доработки

Выходное сопротивление канала VGA:GPU, мОм

9.8

4.7

Выходное сопротивление канала VGA:MEM, мОм

11

7.7

Нестабильность по выходам VGA, В

0.3

0.2

КПД для нагрузки 50% (600 Вт), %

90.5

91

КПД для нагрузки 83% (1000 Вт), %

88.6

89.2

Максимальная мощность БП, Вт

1040

1180

При тестировании БП в оригинальном исполнении четыре кабеля питания PCI-E подключались попарно к нагрузкам «VGA:GPU» и «VGA:MEM». После доработки новый кабель подключился к «VGA:GPU», а на «VGA:MEM» были оставлены два старых кабеля. Модификация кабельного хозяйства резко снизила выходное сопротивление «VGA:GPU», что очевидно, но, кроме этого, произошло улучшение и на нагрузке «VGA:MEM», хотя в той цепи я ничего не делал!  Давайте разберемся. Кабели питания PCI-E подключаются к плате разъемов, которая, в свою очередь, подключается к выходу 12v3 блока питания отдельным жгутиком. При переходе к доработанному варианту я оставил только половину кабелей PCI-E с сохранением прежнего тока через каждый из них – это означает, что величина падения на кабелях не изменилась. Снижение сопротивления может лишь произойти по одной причине – уменьшению падения на том жгутике, который соединяет БП и плату разъемов. Ранее канал «VGA:MEM» показывал сопротивление 11 мОм, после снятия половины тока через «жгутик» 7.7 мОм. Отсюда нетрудно найти сопротивление  потерь в жгутике, плате разъемов и самих разъемах - около 3 мОм. Если учесть, что провод подключен через датчик тока в 1 мОм, то расчетное значение примерно соответствует истине. Думаю, вы сами уже видите, что «модульность» - это зло. Самодельный кабель - 4.7 мОм, фирменное решение (даже с учетом улучшения) - 7.7 мОм.

Кроме выходного сопротивления, улучшение постигло и другие характеристики – величину нестабильности каналов 12 В и немножко поднялся КПД. И, самое приятное, БП смог перешагнуть мощность 1000 Вт и выдать почти номинал (1180). Здесь уже точно не справился эмулятор сети, посмотрите на завал КПД в конце графика:

Блок питания Aresze EPS 1200ELA

При съеме характеристик БП проходил испытание как 800 Вт, для совместимости с начальным тестированием.

При запуске БП от обычной сети 220 В была измерена предельная мощность данного БП, которая составила 1400(+/-5) Вт, что полностью соответствует заявленным характеристикам.

Третий вариант.  

Изготовление собственного кабеля вопрос хлопотный, «первый» вариант заведомо ущербен, существует ли возможность выполнить что-то «среднее»? Для улучшения работы БП надо повысить порог токовой защиты и, желательно, снизить выходное сопротивление по выходу питания PCI-E. Если делать «хорошо», то на плату разъемов надо вывести не один канал, а два-три. Скажем, добавить 12v2 (материнская плата) и 12v4 (периферия). И то и другое физически не могут потреблять большой ток (2-5 А, не более), а предел токовой защиты по ним тот же, как и на других выходах, 40 А (наверно, срабатывание 59 А). Увы, переразводка  печатной платы процедура еще более хлопотная, чем было с кабелем, поэтому стоит разу перейти к модификации имеющейся. Кроме «12v3» PCI-E на эту плату приходит еще 12 В «12v4», причем жгутик проходит вдоль всей платы. Почему бы не использовать его?

Блок питания Aresze EPS 1200ELA

Модификацию можно выполнить двумя способами:

  • Снять плату разъемов, отсоединить два соединителя PCI-E от шины 12v3 и переключить их на 12v4;
  • Просто сделать перемычку от 12v4 до ближайшего разъема PCI-E.

Второй вариант не только проще, но и лучше - при его выполнении каналы 12v3 и 12v4 объединяются и суммарный ток по ним, причем в любой комбинации, составляет уже 80 А (порог защиты примерно 110 А). Цифра как раз соответствует желаемому значению, ни больше, ни меньше – а потому принимается именно такой вариант.

Для выполнения доработки надо выпаять желто-синий жгутик и изолировать выводы ближайшего разъема PCI-E, которые соединяются с общей заливкой с этой стороны платы (это шина земли).

Блок питания Aresze EPS 1200ELA

Я использовал два слоя картона, более мягкий материал может продавиться. После высыхания клея припаиваем жгутик, предварительно разделив его на 3 провода с зачисткой и опайкой места монтажа.

 

Блок питания Aresze EPS 1200ELA

Для проверки эффективности модификации выполним полный тест блока питания, ознакомиться с отчетом вы можете по следующей ссылке.

Посмотрим, что же изменилось.  Предыдущий вариант доработки назван «Mod 1», этот – «Mod 2».

Параметр

Оригинальное

Mod 1

Mod 2

Выходное сопротивление канала VGA:GPU, мОм

9.8

4.7

7.1

Выходное сопротивление канала VGA:MEM, мОм

11

7.7

7.2

Нестабильность по выходам VGA, В

0.3

0.2

0.226

КПД для нагрузки 50% (600 Вт), %

90.5

91

90.8

КПД для нагрузки 83% (1000 Вт), %

88.6

89.3

89.1

Максимальная мощность БП, Вт

1040

1180

1180

Выходное сопротивление по обоим выходам на видеокарты стало одинаковым и именно такого значения, как в предыдущей модификации с уменьшенным током по выходам PCI-E. Все правильно и полностью подтверждает ранее высказанные предпосылки – «жгутик» питания был продублирован другим таким же «жгутиком» и сопротивление потерь на этом участке цепи снизилось в два раза. Само значение 7.2 мОм конечно хуже прямого соединения (4.7 мОм), но … что же делать, 2.5 мОм – это именно та цена, что приходится платить за «модульность».

В остальном, вторая модификация занимает «промежуточное» положение между оригинальной версией и первой модификацией, но сам БП смог выдать больше 1000 Вт (в действительности почти 1400 Вт), что и требовалось от доработки.

Позиционирование блока питания

В этом блоке питания четыре канала 12 В – процессор, материнская плата, PCI-E и периферия. По каждому выходу декларируется ограничение тока нагрузки 40 А (срабатывание защиты при ~59 А). Спецификация выглядит красиво, только в компьютере обычного пользователя процессор потребляет гораздо меньше 500 Вт. Внутренние нужды материнской платы и периферийных устройств вряд ли превысят 100 Вт – индустрия компьютерных компонентов давно перешла на «зеленые» технологии с экономией энергопотребления. Основной потребитель в таких системах - видеокарта, точнее видеокарт  ы   , ведь вряд ли кто-нибудь будет собирать системный блок с БП класса «1200 Вт» и одной видеокартой. Дело не в рациональности или экономии средств – просто существует множество хороших БП с номинальной мощностью 800-1000 Вт, способных обеспечить качественное питание компьютера c одной, даже самой мощной, видеокартой. Это означает, что блок питания Aresze «EPS 1200ELA» следует рассматривать именно в ключе множества видеокарт, и тут на первый план выступает ограничение по максимальному току выхода питания PCI-E, составляющее величину всего лишь 40 А.

Давайте посмотрим с другого ракурса, сколько видеокарт можно установить в системный блок и не перегрузить БП? Платформа LGA 2011 позволяет устанавливать до 4х видеокарт, попробуем представить различные варианты в виде таблицы:

Тип, кол-во видеокарт

1 шт, Вт

2 шт, Вт

3 шт, Вт

4 шт, Вт

«ТОР-»

180

360

540

720

«ТОР»

220

440

660

880

«ТОРх2»

350

700

1050

-

«ТОР-» с разгоном

230

460

690

920

«ТОР» с разгоном

260

520

780

1040

«ТОРх2» с разгоном

400

800

1200

-

Странно. Блок питания Aresze «EPS 1200ELA» очень мощный, 1200 Вт, но и он бы не смог поддержать все возможные варианты. Если заложить на процессор и всё остальное 350 Вт, то на видеосистему «останется» около 850 Вт. По таблице соответствуют следующие позиции: «ТОР-» *4,  «ТОР» *4,  «ТОРх2» *2, «ТОР- OC» *3,  «ТОР OC» *3,  «ТОРх2 OC» *2.

Теперь сравним, а можно ли их вообще подключить? В комплект БП входят «модульные» кабели питания PCI-E с окончанием в виде двух разъемов:  8(6+2) и 6. Это означает, что возможно обеспечить питанием или две видеокарты с разъемами 8+8 или четыре по формуле разъемов 8+6 (или 6+6). Современные «ТОР» и «ТОРх2» собираются с разъемами 8+8, а потому их количество не может превышать ДВУХ штук – и если для  видеокарт с двумя графическими процессорами это вполне устраивает (по мощности), то варианты «ТОР», которых можно было бы позволить до четырех штук, придется резко ограничить – иначе где взять еще четыре разъема 8(6+2)? Предлагается пойти в магазин и купить переходники с 6 в 8(6+2) ? Знаете, такие случаи допускаются при сборке «бюджетной» системы, но когда речь заходит о солидной конструкции …

Итак, никаких «ошибок», общее построение блока питания не совпадает с его заявленной мощностью. Причем, это происходит и по схеме распределения каналов 12 В и по прилагаемым съемным кабелям PCI-E.

Лично я не понимаю позиционирование этого блока питания. Сам силовой модуль работает почти без нареканий, но очевидная ошибка по общей компоновке БП приводит к снижению эксплуатационной мощности с 1200 до 900 Вт (при 1000 уже срабатывает защита по превышению тока в 59 А выхода питания PCI-E). Причем, у пользователя нет никаких возможностей обойти это ограничение, не будет же он набирать 400 Вт через переходники 2хPATA->PCI-E. Или что, лезть в свежеприобретенный БП и что-то там дорабатывать?…

Выводы

Блок питания довольно тих, вентилятор работает на скорости вращения 670 об/мин при низкой нагрузке с повышением до 1500 при переходе порога в 600 Вт. Вентилятор никогда не выключается, что лично я считаю положительным свойством и этот факт позволяет использовать его при «нижнем» расположении в системном блоке. Сам блок питания выполнен довольно гармонично и, прямо скажем, изыскано, особенно привлекает «живая» подсветка вентилятора. Фиксированные и съемные шлейфы обеспечивают сборку системного блока произвольной конфигурации, если не брать заведомо экзотических вариантов. К электронике силовой части особых замечаний нет, разве что излишне агрессивный стиль блока APFC, из-за его очевидной ориентации на сеть 115 В. Теперь же о недостатках:

  • Съемные кабели периферии четко разделены на «только PATA» и «только SATA», что обязывает установку, как минимум, двух кабелей при наличии хоть одного устройства с питанием PATA (и SATA);
  • Блок APFC ориентирован на сеть 115 В, а потому излишне «агрессивен» при использовании обычной сети 220 В. Как следствие, БП имеет низкий PF и … даже не  пытайтесь запустить этот БП от бесперебойного источника без большого запаса по мощности последнего. Иначе UPS «будет раздавлен»;
  • Разделение по каналам 12 В сделано неверно. В результате этот БП физически не способен выдать больше 1000 Вт при типичной конфигурации компьютера. Это означает, что блок питания можно воспринимать только как модель на 900 Вт.

Последний пункт самый важный, ведь блоки питания такого класса покупают на большую мощность и тут выходит полный провал.

Короче говоря, с прискорбием вынужден признать, что БП  Aresze «EPS 1200ELA» является блоком питания на   900 Вт   , не взирая на маркировку и его спецификации. Пользователь не сможет снять с него больше. А жаль, из-за одной глупости очень хороший (и красивый) блок питания отправляется в … эшелон БП класса 800-900 Вт.

Обсудить материал в нашем форуме вы можете после перехода по этой ссылке.

В тестовой лаборатории Modlabs новый блок питания - Seasonic X-1250 GOLD

Рубрики: Корпуса и БП
Метки: |
Дата: 30/10/2012 13:51:03
Подписаться на комментарии по RSS

Не так давно в нашей тестовой лаборатории побывал процессор AMD FX-8350 (Vishera). Из названия обзора этого ЦП следует логичный вывод о том, что раз уже вышла первая его часть, значит должна быть и вторая часть. Разумеется, всё логично и предсказуемо, вот только для проведения объективного и глубокого тестирования, которое мы хотели сделать, нам не хватало несколько деталей для тестового стенда. Первая и самая важная деталь в нашем случае – хороший блок питания, поскольку именно БП в тестовой системе мог стать тем ограничивающим фактором, который бы негативно сказался на процессе покорения максимальной частоты CPU. К счастью, благодаря помощи компании Seasonic нам удалось решить эту проблему и я с радостью сообщаю, что в нашей тестовой лаборатории теперь прописался новый житель – блок питания Seasonic X-1250 GOLD (SS-1250XM). Думаю, для разгона любой современной системы это БП подойдёт на все 100%.

В этой заметке я не буду проводить тестирование нового БП, я просто хочу показать комплектацию и внешний вид Seasonic X-1250 GOLD, а обо всех его возможностях скажут результаты разгона системы на базе AMD FX-8350, а также других систем, которые мы планируем на нём разгонять.

 

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Солидных размеров чёрно-золотая картонная коробка хранит в себе сам блок питания, набор кабелей, комплект стяжек и инструкцию по эксплуатации. Надо сказать, что всё это добро упакована с большой тщательностью и аккуратностью, как и полагается в случае с дорогими и высококачественными продуктами. Цветовая гамма и способ упаковки также всячески намекают на высокий статус блока питания Seasonic X-1250 GOLD. Чего только стоит чехол для БП из бархатистой чёрной ткани.

 

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Блок питания Seasonic X-1250 GOLD полностью модульный, в отличие от других моделей, которые были в нашем тестлабе в качестве основы для тестового стенда. В случае с X-1250 GOLD есть возможность подключить только то, что действительно нужно. Все подписи на панели подключения нанесены аккуратно и хорошо видны, присутствует переключатель режима работы вентилятора – это плюс. Для подключения к сети Seasonic X-1250 GOLD не требует специального кабеля, как, например, Anteс TPQ-1200 OC (1200 Вт), который, кстати, трудится для Modlabs в Нижнем Новгороде. В общем, смотрим на табличку с заявленными показателями мощности, на все сертификаты, полученные нашим новым БП и, возрадовавшись, ждём хороших результатов от подопытных систем.