Performance

Домашняя и Объемная. AMD Performance Memory.

Рубрики: Оперативная память
Метки: | | | | |
Дата: 10/11/2012 21:07:50
Подписаться на комментарии по RSS

Не так давно на нашем сайте появился обзор комплекта оперативной памяти AMD Entertainment Memory. Сегодня мы продолжим знакомство с линейкой памяти AMD, на этот раз речь пойдет о более производительном варианте - Performance Memory.

Память поставляется в коробочном исполнении, надо признать, выглядит упаковка довольно эффектно. На лицевой стороне находится информационный стикер с характеристиками продукта. Внутри находится комплект из пары модулей памяти, каждый из которых имеет объем 4 Гбайт. Без разгона память способна работать на частоте 1600MHz с таймингом CL 8, при этом рабочее напряжение составляет 1.65 Вольт. Суммарный объем комплекта AMD Performance Memory – 8 Гбайт.

AMD Performance Memory

На обратной стороне упаковки можно ознакомиться со всеми особенностями комплекта Performance Memory. Интересно, что текст совершенно идентичен тому, что содержится на упаковке комплекта Entertainment Memory. Различие заключается лишь в замене слов Entertainment на Performance :)

AMD Performance Memory

Внутри как всегда - все самое интересное! От повреждений при транспортировке память защищает еще одна прозрачная «обертка». Кроме двух модулей памяти в комплекте поставки больше ничего нет.

AMD Performance Memory

Изучив наклейку на модуле, мы можем дополнить информацию о характеристике памяти: Part number (AP38G1608U2K), более полные значения таймингов выглядят так: 8-9-8-24. Память AMD Performance была разработана компанией PATRIOT специально для Advanced Micro Devices.

AMD Performance Memory

На чипах памяти установлены радиаторы из алюминиевого сплава, окрашенные в матовый чёрный цвет.  В сочетании с опять-таки черной PCB и красной наклейкой AMD, модули выглядят весьма эффектно, дорого. Посмотрим, насколько частотный потенциал модулей будет соответствовать внешнему виду. Охлаждение лишь незначительно выходит за края PCB, поэтому проблем с установкой крупногабаритной системы охлаждения для центрального процессора, возникнуть не должно.

AMD Performance Memory

Радиаторы фиксируются на модуле и контактируют с чипами благодаря специальной термоплокладке. Каждая из микросхем очень хорошо контактирует с поверхностью радиатора - это должно оказать позитивное влияние на надежность работы и потенциал разгона. Дополнительного, механического, крепления радиаторов не предусмотрено.

AMD Performance Memory

Радиаторы держатся очень надёжно. Демонтировать их вручную так и не удалось (это, конечно, возможно, но работоспособность памяти после этого не гарантируется!) Для демонтажа понадобился фен для волос (Чувствую, мне пора приобретать личный фен… Азотный стакан во время бенчей разморозить, радиатор продуть, с каждым днем все больше и больше задач, а личного фена пока нет:)). Для успешного демонтажа радиаторов, их необходимо равномерно прогреть, только после этого можно начинать приподнимать радиатор. Если он не демонтировался до конца, необходимо повторно прогреть, после чего продолжить манипуляции по снятию. При демонтаже перовой стороны я грел радиатор два раза подряд. Вторую получилось снять с первой попытки. Главное не торопится и соблюдать аккуратность, иначе можно повредить модули!

AMD Performance Memory

Установка радиаторов осуществляется в обратном порядке: прогреваем термопрокладку и прижимаем её к радиатору модуль памяти. После этого можно еще раз прогреть радиатор и сделать контрольный прижим.

AMD Performance Memory

На одном модуле установлено шестнадцать микросхем памяти, по восемь с каждой стороны. Их маркировка AMD 23EY4587MB6G. После того, как я узнал о настоящем изготовителе памяти, (напомню, она была разработана компанией PATRIOT) я был уверен, что для производства будут использоваться микросхемы этого производителя, как оказалось, я ошибся.

AMD Performance Memory

Микросхема SPD имеет маркировку C2G HMB 1GP.

AMD Performance Memory

 

С помощью программы AIDA v2.60.2100 мы можем увидеть детальную информацию, записанную в SPD. Сразу в глаза бросается отсутствие предустановленных таймингов 8-9-8-24. Оказывается рабочий режим, указанный на модулях, является опциональной функцией разгона. Тайминги 8-9-8-24 и напряжение 1.65 пользователю придётся устанавливать вручную. Значит без дополнительных настроек, комплекты Entertainment и Performance идентичны! Ладно, переходим к тестированию.

 AMD Performance Memory 

Для оценки потенциала разгона использовался открытый тестовый стенд, со следующей конфигурацией: 

  • Материнская плата: ASUS SABERTOOTH 990FX (AMD 990X, AM3+);
  • Процессор: AMD FX-8350
  • Охлаждение CPU: Cooler Master Hyper 212 Plus;
  • Термоинтерфейс: Arctic Cooling МХ-2;
  • Видеокарта: AMD Radeon HD 7970;
  • Оперативная память: AMD Performance Memory (DDR3-1600, 8 Гбайт);
  • Накопитель: Seagate ST3250410AS 250GB ;
  • Блок питания: Seasonic X-1250 GOLD (SS-1250XM)
  • Операционная система: Microsoft Windows 7 x64 Ultimate SP1;
  • Версия драйвера: Catalyst 12.3.

35

Блок питания Seasonic X-1250 GOLD (SS-1250XM)

Условия тестирования:

  • В качестве теста стабильности использовалась программа MemTest86+ v4.20, для проверки мы использовали тест №5, от памяти требовалось безошибочное завершение 5 тестовых циклов.
  • Тайминг Command Rate всегда устанавливался в 1T.
  • Все второстепенные тайминги были зафиксированы на стандартных значениях, прописанных в SPD для частоты 1600 МГц.  
  • Чтобы исключить влияние материнской платы и процессора на оверклокерский потенциал памяти, частота процессора была снижена до 3 ГГц.
  • Стабильно рабочий диапазон частоты шины составил 200-270 МГц. Так же стоит отметить, что использовались различные множители частоты шины к частоте памяти (данный фактор не повлиял на результаты, SABERTOOTH 990FX отлично работала со всеми множителями).
  • При тестировании во всех режимах память обдувалась 120мм кулером.

Тестирование производилось с тремя различными значениями напряжения: 1.55 В, 1.65 В и 1.80 В. Тайминги устанавливались в «ровных» значениях. При оптимизации работоспособности памяти, тайминги CAS Latency (tCL) и RAS# Precharge (tRP) возможно удастся понизить на один-два пункта.

AMD Performance Memory 

Итак, перед вами результаты тестирования. Попытка установки таймингов 7-7-7-22 не принесла успехов, с такими задержками системе не удалось достигнуть стабильности даже на частоте 1333 МГц (при напряжении 1.5В ошибки сыпались одна за другой, при увеличении напряжения до 1.8В количество ошибок сократилось, но полностью они так и не исчезли). Опускать частоту ниже 1333 МГц не имеет смысла и вот почему: в нашем предыдущем обзоре мы производили тестирование в различных приложениях, было видно, что низкая частота с уменьшенными таймингами не дала позитивных результатов в сравнении с большими частотами и задержками.

Учитывая среднюю московскую цену, которая на момент написания материала составляет 1980 рублей, можно сделать вывод, что эта память никак не претендует на роль “выбора оверклокера и бенчера”, это подтверждают и полученные нами результаты разгона. Конечно, в массовом порядке сегодня навряд ли кто-то использует 8 Гбайт комплекты в гонке за новыми мировыми рекордами. В основном, на данный момент, выбором бенчера являются высокочастотные комплекты объемом 4 Гбайт. Комплект AMD Performance Memory идеально подойдет для повседневного использование в составе мощной домашней системы, в которой используются приложения требующие больших обьемов оперативной памяти. А если все же захочется повысить производительность компьютера путем разгона оперативной памяти, Performance Memory даст вам такую возможность.

Полученные результаты говорят о том, что разница в производительности и разгонном потенциале между комплектами Entertainment и Performance минимальна и будет зависеть в основном от комплекта. Ещё, к стати, имеется AMD Radeon Edition и сейчас мне очень хочется узнать, в чем заключается ее отличие от Performance и Entertainment Установлены ли другие чипы, можем ли мы рассчитывать на хороший разгонный потенциал или же просто увеличены тайминги и частота? Но все эти вопросы - дело совсем другого обзора.

AMD Performance Memory

Обсуждение материала в нашем форуме находится здесь.

Тестирование трех накопителей Crucial m4 128 Gb в режимах RAID0 и RAID5

Рубрики: Накопители и SSD
Метки: | | | | | | | | | | | | | | |
Дата: 15/01/2012 21:30:57
Подписаться на комментарии по RSS

Что делать в том случае, если скорости какой-либо из подсистем компьютера недостаточно, а возможности для её модернизации на более производительные аналоги уже исчерпаны? В этом случае проблема решается количественным наращиванием характеристик, путем объединения возможностей нескольких устройств для совместной работы в одной системе. В центральных процессорах идет увеличение количества ядер, мощность графической подсистемы увеличивается при помощи таких технологий как SLI и CrossFireX, а для дисковой подсистемы используется объединение нескольких накопителей в RAID-массив. Но если производительность многоядерных процессоров и видеокарт в multi-GPU системе напрямую зависит от эффективности поддержки со стороны программного обеспечения и его оптимизации, то в случае с RAID-массивом большее влияние оказывает драйвера и firmware, а не прикладное ПО.

Возможность объединения нескольких накопителей информации в RAID массивы уже на протяжении многих лет поддерживается абсолютным большинством материнских плат, причем не только тех, что ориентированы на использование в серверах или рабочих станциях, но и для обычных домашних компьютеров. Поддержка технологии RAID есть практически у всех современных чипсетов. Но если три года назад и раньше интегрированный на материнской плате RAID-контроллер не рассматривался как приемлемый вариант для построения очень быстрой дисковой подсистемы, то сейчас ситуация изменилась.

Благодаря росту производительности процессоров, зависимость от него при работе с RAID-массивом уже не так критична как раньше. На большинстве аппаратных RAID контроллеров для использования в качестве кэш-памяти до сих пор применяются "древние" микросхемы с низкой (по современным меркам) пропускной способностью, в то время как драйвера для чипсетных RAID-контроллеров (например, Intel Rapid Storage Technology) для кэширования используют оперативную память, пропускная способность которой достигает 20-30 гигабайт в секунду. Но самое главное - появилась поддержка нового интерфейса SATA 6 GB/sec, то есть вдвое увеличилась пропускная способность SATA-портов.

Это конечно не означает, что интегрированные RAID-контроллеры по своим возможностям стали сравнимы с дискретными платами enterprise-уровня. Но если несколько лет назад для получения скорости дисковой подсистемы в районе гигабайта в секунду требовалось очень дорогостоящее оборудование, то теперь к этому уровню уже вплотную приблизилась связка из обычной материнской платы на чипсете Intel P67/H67/Z68 и пары-тройки быстрых SATA3 SSD.

3x Crucial m4 128Gb

Для того чтобы выяснить, насколько поднимет производительность дисковой подсистемы объединение нескольких SSD в RAID-массив, были взяты три накопителя Crucial m4 128 Gb. Это позволило создать из них массив как нулевого (из двух и из трех SSD), так и пятого уровня (только из трех). Их обзор уже был опубликован ранее, поэтому переходим непосредственно к результатам их тестирования в режиме RAID.

Тестовая конфигурация и используемое ПО

Для тестирования был собран открытый стенд с такой конфигурацией:

  • Процессоры: Intel Core i7-2600K D2 (Sandy Bridge), 3400 МГц;
  • Материнская плата: ASUS Maximus IV Extreme, Rev. 1.02, Intel P67, BIOS 1902;
  • Память: G.Skill Perfect Storm F3-16000CL7-6GBPS, DDR3-2000, PC3-16000, 2x2048Mb;
  • Видеокарта: Sapphire Radeon HD 6950, 2048 Мбайт GDDR5, PCI-E;
  • Накопители: Crucial m4 128 Гбайт, Western Digital WD1002FAEX 1Тбайт;
  • Блок питания: Antec TruePower Quattro TPQ-1000, 1000W;
  • Термопаста: Arctic Cooling MX-4;
  • Охлаждение процессора: GlacialTech F101 PWM.

Программное обеспечение:

  • OS: Windows 7 Enterprise SP1 x64 v6.1.7601 (english);
  • DirectX Redistributable (Jun2010);
  • Intel Chipset Device Software v9.2.3.1016;
  • Intel Rapid Storage Technology driver v10.6.0.1002;
  • Intel Management Engine Interface driver v7.0.10.1203;
  • AMD Catalyst driver v11.8;
  • CPU-Z v1.58;
  • Crystal Disk Mark v3.0.1;
  • HD Tune Pro v4.60;
  • HD Tach v3.0.4.0;
  • ATTO Disk Benchmark v2.46;
  • AS SSD Benchmark v1.6.4237.30508;
  • AIDA64 Extreme v1.85.1604 beta;
  • PCMark05 v1.2.0;
  • PCMark Vantage v1.0.2;
  • IOmeter v1.1.0 RC1.

Процессор был разогнан до частоты 4700 МГц с напряжением 1.40V путем увеличения множителя.

Память работала на частоте 2133 МГц с таймингами 7-8-7-21 1T и напряжением 1.75V.

Видеокарта работала на номинальных частотах 800/1250 МГц, но с разблокированными до 1536 потоковыми процессорами.

Сравнение производительности одиночного накопителя и RAID-массива

Для подключения накопителей были использованы порты на материнской плате, реализованные средствами чипсета Intel P67.

Результаты были получены еще до выпуска firmware версии 0009 для Crucial m4. С новой прошивкой они могли бы быть еще выше, но, к сожалению, к моменту её появления уже не было повторить возможности тестирование. Разницу производительности между старой и новой прошивкой можно оценить по результатам тестирования на одиночном SSD.

Операционная система загружалась с жесткого диска Western Digital WD1002FAEX. В настройках операционной системы была включена опция для очистки кэша записи (Turn off write-cache buffer flushing). Перед началом тестирования на SSD или RAID-массиве создавался пустой раздел на весь доступный объём в формате NTFS c размером кластера по умолчанию. Дополнительно, при тестировании во всех режимах с RAID, перед запуском каждого бенчмарка, массив был пересобран для того, чтобы на каждом накопителе принудительно выполнить команду TRIM при помощи программы SSD Tweaker.

SSD Tweaker - TRIM Optimize Manager

Производительность измерялась в четырёх режимах:

  1. Одиночный накопитель в режиме AHCI, подключенный к порту SATA3.
  2. RAID0 из двух накопителей, подключенных к портам SATA3.
  3. RAID0 из трёх накопителей, подключенных к портам SATA2. Сравнение с вариантом, при котором один или два из трёх накопителей подключались к портам SATA3, показало такие же результаты. Производительность в RAID0 определяется самым медленным из участников массива.
  4. RAID5 из трёх накопителей. Два из них были подключены к портам SATA3 и еще один к SATA2.

По умолчанию драйвер Intel Rapid Storage Technology предлагает для массива из SSD-накопителей использовать размер stripe, равный 16 Kb для RAID0 и 128 Kb для RAID5.

Intel RST Stripe Size Table

Но сравнение результатов с разным размером stripe показало, что в случае с RAID0 из SSD оптимален размер 8 Kb, который и был использован.

2x Crucial m4 128Gb RAID0 - PCMark05 - Stripe Size Test

Также при создании массива устанавливалось опция "Включить кэш обратной записи тома" (Enable volume write-back cache).

Intel RST - Create Array

Crystal Disk Mark v3.0.1

Настройки: Test Data = Default (Random), размер тестового файла = 1000 Mb, количество проходов бенчмарка = 3.

Crucial m4 RAID - Crystal Disk Mark - Read

Crucial m4 RAID - Crystal Disk Mark - Write

Crucial m4 RAID - Crystal Disk Mark - IOPS

HD Tune Pro v4.60

Настройки: Full test, 64 Kb block size.

Crucial m4 RAID - HD Tune - Read Transfer

Crucial m4 RAID - HD Tune - Random Seek - Transfer

Crucial m4 RAID - HD Tune - Random Seek - IOPS

HD Tach v3.0.4.0

Настройки: Long Bench (32mb zones), запуск в режиме совместимости с Windows XP SP3.

Crucial m4 RAID - HD Tach

ATTO Disk Benchmark v2.46

Настройки: Total Length = 256 Mb, Queue Depth = 4.

Crucial m4 RAID - ATTO Disk Benchmark - Read

Crucial m4 RAID - ATTO Disk Benchmark - Write

AS SSD Benchmark v1.6.4237.30508

Crucial m4 RAID - AS SSD Bench - Score

Crucial m4 RAID - AS SSD Bench - Read

Crucial m4 RAID - AS SSD Bench - Write

Crucial m4 RAID - AS SSD Bench - Access

AIDA64 Extreme v1.85.1604 beta - Disk Benchmark.

Настройки: Block Size = 1 Mb.

Crucial m4 RAID - AIDA64 - Read Test Suite

Crucial m4 RAID - AIDA64 - Buffered Read

Crucial m4 RAID - AIDA64 - Average Read Access

PCMark05 v1.2.0 - HDD Test Suite

Crucial m4 RAID - PCMark05 - HDD Test Suite

Crucial m4 RAID - PCMark05 - HDD Test Suite Detailed

PCMark Vantage v1.0.2 - HDD Test Suite.

Crucial m4 RAID - PCMark Vantage - HDD Test Suite

Crucial m4 RAID - PCMark Vantage - HDD Test Suite Detailed

IOmeter v1.1.0 RC1

Настройки: Access specification = 100% Random, Block Size = 4 Kb, Queue Depth = 32.

Crucial m4 RAID - IOMeter - Read

Crucial m4 RAID - IOMeter - Write

Влияние использования RAID из накопителей SSD на показатели производительности дисковой подсистемы:

  1. Скорость линейного чтения. Растёт по сравнению с одиночным накопителем, но со временем ухудшается, по мере заполнения массива информацией. Это происходит из-за отсутствия поддержки TRIM в RAID. Скорость чтения восстанавливается только после разборки массива, применения TRIM на всех дисках по отдельности и последующей сборки обратно. Подробнее об этом - в следующем разделе.
  2. Скорость линейной записи. Растёт, даже при подключении накопителей к портам SATA2.
  3. Скорость случайного чтения. Растёт при наличии очереди (QD>1) или при размере блока 512Kb и выше (даже без очереди). Незначительно (на 2-4% или 1-2 Mb/sec) уменьшается при отсутствии очереди (QD=1) и размере блока 4Kb и меньше.
  4. Скорость случайной записи. Растёт в режиме RAID0 и падает в режиме RAID5.
  5. Буферизированное чтение (HD Tune, AIDA64). Возрастает в десятки раз (до нескольких гигабайт в секунду), независимо от типа массива и количества дисков. Это связано с различным алгоритмом кэширования в драйвере Intel Rapid Storage Technology для одиночных накопителей и RAID-массивов.
  6. Время доступа. Может изменяться в небольших пределах, но все равно остается очень низким, как и у одиночного накопителя.
  7. Нагрузка на CPU. Возрастает до 10-19% на линейном чтении (HD Tune, HD Tach) и до 18-37% при случайном доступе блоками 4 Kb с глубиной очереди 32 (IOMeter).

Кроме всего перечисленного выше, в процессе тестирования была обнаружена одна особенность кэширования записи в драйвере Intel Rapid Storage Technology. В случае присутствия в системе любого RAID-массива (даже из HDD), скорость случайной записи блоками 4 Kb (QD=1) на одиночный SSD-накопитель по результатам бенчмарков Crystal Disk Mark и AS SSD Benchmark примерно на 20% (до 123 и 112 MB/sec соответственно) выше, чем в системах без RAID. И даже если массив разобрать, то до ближайшей перезагрузки компьютера, скорость одиночных накопителей не изменится (в том числе и только что разобранных из RAID).

Влияние отсутствия TRIM на производительность RAID-массива из SSD

Как уже было сказано выше, отсутствие поддержки TRIM в RAID приводит к падению скорости чтения после заполнения массива информацией. Провалы образуются только на тех участках, в которые после создания массива производилась запись. И остаются там, даже после удаления записанной информации. Давайте посмотрим, насколько велики эти провалы.

Начнём с конфигурации из двух накопителей в режиме RAID0, подключенных к портам SATA3. Провалы скорости достигают 30%.

AS SSD Benchmark v1.6.4237.30508

2x Crucial m4 RAID0 - AS SSD Bench - TRIM

В случае использования трех накопителей в режиме RAID0 падение скорости чтения несколько ниже (около 25%), так как сверху их ограничивает пропускная способность SATA2-портов.

HD Tune Pro v4.60

3x Crucial m4 RAID0 - HD Tune - TRIM

HD Tach v3.0.4.0

3x Crucial m4 RAID0 - HD Tach - TRIM

PCMark05 v1.2.0 - HDD Test Suite: падение результата с 182010 до 135675

RAID5 из трех накопителей, так же как и RAID0 из двух, теряет примерно 30% скорости чтения.

HD Tach v3.0.4.0

3x Crucial m4 RAID5 - HD Tach - TRIM

Результаты в бенчмарках PCMark04, PCMark05, PCMark Vantage и PCMark7

Для получения максимальных  результатов в бенчмарках PCMark использовалась та же тестовая конфигурация с незначительными изменениями. Блок питания был заменен на Enermax Revolution 1050W и добавлено еще два модуля памяти на микросхемах Elpida Hyper. На процессоре был установлен водоблок Thermalright XWB-01, а на видеокарте водоблок Topmods.net. Оба водоблока охлаждались проточной холодной водой. Процессор был разогнан до частот около 5400 МГц с напряжением 1.65-1.68V, а видеокарта 1030/1530 МГц с напряжением 1.30V.

Core i7-2600K and Radeon HD6950 cold water cooled

В PCMark04 влияние дисковой подсистемы на результат минимально, по причине отсутствия HDD-подтестов в System Test Suite. Самое главное в этом бенчмарке - настроить динамическое переключение частоты/множителя/ядер процессора, чтобы не допустить появления ошибки в подтесте Grammar Check. Результат в 23109 баллов уже второй месяц держится на вершине рейтинга hwbot.org.

PCMark04 WR (23109)

Отрыв больше трех тысяч от ближайшего результата получен благодаря использованию операционной системы Windows 8 build 7955, а так же настройкам браузера Internet Explorer 9 и видеокодека WMV. Для PCMark04 в RAID из SSD не было необходимости, оказалось достаточно и одного накопителя.

В PCMark05 так же был получен рекордный результат, причем несколько раз. Но все они в течениe короткого времени перекрывались чуть более высокими результатами австралийского оверклокера pro, использовавшего процессор с более высоким разгонным потенциалом и гораздо более мощную и дисковую подсистему.

PCMark05 #4 (47070)

Итоговый результат в 47070 баллов в настоящее время находится на четвертом месте. И это единственный результат выше 40 тысяч, полученный с использованием всего двух накопителей SSD и интегрированного RAID-контроллера, вместо массива из нескольких аппаратных RAM-дисков (Acard ANS9010 или Gigabyte iRAM). Использование в PCMark05 трех SSD в режиме SATA2 давало почти такие же результаты, как  и на двух в SATA3, даже чуть ниже.

PCMark Vantage - самый зависимы от скорости дисковой подсистемы бенчмарк среди всех версий PCMark. Догнать в нём владельцев массивов из множества RAM-дисков при прочих равных условиях очень сложно, поэтому результат в 36467 балла оказался только на 4 месте (или на 2-м, если считать результаты, полученные только на 4-ядерных процессорах).

PCMark Vantage #4 (36467)

Для PCMark Vantage уже были использованы все три накопителя в RAID0.

Самая новая версия - PCMark7 зависит от дисковой подсистемы гораздо меньше, чем PCMark Vantage, но и для него также был использован RAID из трех SSD. Результат в 7014 баллов держится на первом месте уже больше двух месяцев.

PCMark7 WR (7014)

Использование RAID из SSD позволяет значительно улучшить результаты в бенчмарках PCMark всех версий, за исключением разве что самого старого PCMark04. При этом разница между результатами на двух SSD, подключенных к портам SATA3 и трех к SATA2 очень невелика. Очевидно, что для рекордных результатов стоит использовать только массивы нулевого уровня, RAID5 не подходит из-за крайне низкой скорости записи.

Заключение

Объединение SSD-накопителей в RAID0 позволяет заметно повысить скорости линейного и случайного доступа при работе с большими блоками, либо при наличии глубины очереди. Например, при использовании двух накопителей, скорость чтения на чистом массиве увеличивается почти вдвое, по сравнению с одиночным накопителем, но по мере заполнения его данными начинает довольно сильно проваливаться. Скорость записи стабильна и местами возрастает даже больше, чем вдвое, если конечно включить кэш обратной записи при создании массива. Случайная запись мелкими блоками (4 Kb, QD=1) возрастает в несколько раз, потому как попадает в кэш драйвера RAID-контроллера. Проблем с увеличением времени доступа нет, при условии, что процессор не загружен полностью чем-то еще и может обеспечить выполнение операций ввода-вывода без задержек. Нагрузка на CPU при использовании RAID значительно возрастает, но если он достаточно мощный (и тем более если разогнан), то проблем это не создаст.

Единственный показатель, который в RAID из SSD остается почти без изменений (и даже немного снижается) - это скорость случайного чтения мелких блоков (4 Kb) без параллельной нагрузки (QD=1). Достаточно большое число пользователей SSD считает этот показатель одним из важнейших и по этой причине отказываются от использования RAID из SSD. Несомненно, он важен, но не стоит забывать и о том, что в операционных системах, для установки которых в первую очередь и используют твердотельные накопители, присутствует множество файлов самого разного объема. А что касается параллельного доступа - он будет в любой многозадачной системе. Сколько у вас одновременно работает программ, в фоновом режиме работающих с файлами? Антивирус, firewall, проигрыватель мультимедиа, клиент P2P-сетей... Достаточно четырех, но чем их больше - тем больше будет пользы от RAID. Впрочем, для создания параллельной нагрузки, достаточно и последнего в этом списке.

Основная проблема RAID-массивов из SSD это отсутствие возможности трансляции команды TRIM через драйвер RAID-контроллера. Она до сих пор не решена (если не считать единичный пока случай использования собственного нестандартного драйвера у OCZ RevoDrive 3) и срок её решения неизвестен. Отсутствие TRIM приводит к снижению скорости работы массива со временем, вернуть обратно которую можно только пересборкой массива и принудительным выполнением TRIM на всех отдельных накопителях. Еще один недостаток - отсутствие прямого доступа к данным в SMART. Из-за этого нельзя отслеживать текущее состояние накопителя. Соответственно не будут работать и программы типа SSDlife, дающие прогноз состояния/жизни накопителя, основываясь на текущих значениях параметров из SMART (Wear Leveling Count и т.п.).

Новейшие микросхемы системной логики Intel (P67/H67/Z68) обладают поддержкой только двух SATA3 портов, а конкурирующие с ними решения от AMD - более низкой производительностью, как самих процессоров, так и интегрированного SATA/RAID-контролера. Поэтому, если вы хотите использовать весь потенциал SATA3 SSD накопителей в количестве более двух, то на данный момент вам для этого понадобится очень недешевый дискретный контроллер с поддержкой более двух портов SATA3. Но лучше еще немного подождать до появления материнских плат с чипсетом Intel X79 и наличием шести портов SATA3 у встроенного контроллера.

Производительность двух SSD в режиме SATA3 близка к трем в SATA2. Второй вариант будет предпочтительней только в том случае, если скорость записи для вас важней скорости чтения. Тоже можно сказать и про выбор между одним SATA3 SSD и двумя SATA2 в RAID0. Но самой сомнительной конфигурацией массива из трех SSD является RAID5. Уровни RAID за исключением нулевого используются для обеспечения отказоустойчивых конфигураций, а для этого необходимо либо отключать кэш записи, либо обеспечивать бесперебойное питание компьютера. Иначе при сбое по питанию произойдет потеря данных, оставшихся на тот момент в кэше записи. Скорость записи у трех накопителей в RAID5 и так ниже, чем у одиночного SSD. А после отключения кэша она упадет до совсем низкого уровня. При использовании SSD исчезает только один из недостатков RAID5 - долгая инициализация массива.

Учитывая, что объем твердотельных накопителей растет пропорционально их стоимости, ответить на вопрос о целесообразности RAID из SSD можно так:

  • Использовать накопители объемом 60/64 Gb в RAID лучше не стоит. Их производительность заметно ниже более ёмких моделей из-за использования только четверти каналов контроллера flash-памяти. Предпочтительней будет один накопитель на 120/128 Gb.
  • Если сравнивать RAID0 из двух накопителей объемом 120/128 Gb и один на 240/256 Gb, то тут уже не все так однозначно. Скорость записи будет выше у варианта с RAID, но по минимальной скорости чтения (а не пиковой, как у только что созданного массива) второй вариант может оказаться предпочтительней. Большинство обычных домашних пользователей вполне могут обойтись одним накопителем. Конфигурацию с RAID можно выбрать, например, для одновременной записи потоков с нескольких видеокамер, для компьютеров типа "seedbox/dump" или просто для бенчмаркинга в PCMark.
  • Ну и если взять за основу для построения массива два накопителя объемом 240/256 Gb, то это точно будет лучше, чем один на 480/512 Gb.

Редакция ModLabs.net выражает благодарность:

- компании ASUS за материнскую плату ASUS Maximus IV Extreme,

- компании Sapphire за видеокарту Sapphire Radeon HD 6950,

- компании Antec  за блок питания True Power Quattro TPQ-1000.

S_A_V

Обсуждение материала приветствуется. Комментарии к статье можно оставить через социальную сеть Вконтакте, Facebook или в специальной теме нашего форума.

но, к сожалению, к