Micron
Micron приступила к производству памяти GDDR6X 24 Гбит/с для видеокарт GeForce RTX 40
Метки: GDDR6X 24 Гбитс | GeForce RTX 4090 | Micron | NVIDIA | RTX 4070 | RTX 4080
Дата: 08/08/2022 11:03:34
Подписаться на комментарии по RSS
Производитель памяти Micron, разработавший технологию GDDR6X в сотрудничестве с NVIDIA для серии видеокарт GeForce RTX 30, в настоящее время готовится к серии графических процессоров следующего поколения, предлагая еще более высокие скорости.
Веб-сайт компании теперь делится информацией о новых модулях GDDR6X. Похоже, что чипы со скоростью 24 Гбит/с уже запущены в производство, всего за 2 месяца до предполагаемого запуска серии NVIDIA RTX 40.
Согласно имеющимся слухам, NVIDIA в своей высокопроизводительной серии адаптеров будет применять VRAM на 21 Гбит/с и 24 Гбит/с. Если информация подтвердится, то калифорнийский разработчик может использовать модули GDDR6X на 21 Гбит/с для трех топовых видеокарт, таких как RTX 4090, 4080 и 4070.
В то же время ходят слухи о возможной флагманской модели, либо о графическом адаптере для профессиональных рабочих станций, либо о настоящем преемнике TITAN, который задействует чипы 24 Гбит/с.
клик для увеличения
Micron, вероятно, не стал бы производить такие чипы просто так, но то, что такая память существует, не гарантирует, что графические процессоры следующего поколения будут использовать полную скорость.
Для серии RTX 30 NVIDIA использовала скорость 21 Гбит/с только для своей модели RTX 3090 Ti, выпущенной в марте этого года, в то время как первоначально карта запускалась в 2020 году с модулями 19,5 Гбит/с.
клик для увеличения
Компания Micron выпустит в 2016 году свой ответ графической памяти HBM
Метки: GDDR6 | Micron
Дата: 14/12/2015 11:28:00
Подписаться на комментарии по RSS
Компания Micron обещает в ближайшем будущем представить новый тип памяти, скорость которой в два раза превышает скорость популярнейшей GDDR5. Новинка станет доступна в течении 2016 года и будет ответом производителя на память HBM. Если верить разработчику, продукт способен обеспечить скорость на уровне от 10 до 14 Гбит/с, тогда как чипы 4 Гбайт GDDR5 от той же Micron характеризуются показателем в 7 Гбит/с. Даже новая память GDDR5 объемом 8 Гбайт может похвастаться скоростью лишь 8 Гбит/с.
Новинка предложит не только увеличение скорости, но и пропускной способности памяти графических ускорителей. Компания вполне могла бы именовать ее GDDR6, поскольку она продолжит использовать форм-фактор GDDR5, что значительно упростит производителям ее внедрение.
Естественно, у многих может возникнуть вопрос, зачем при наличии перспективной памяти HBM 2.0 компаниям AMD и NVIDIA заниматься внедрением «GDDR6», которая уступает ей по скорости и пропускной способности. Однако HBM 2.0 требует усложняющих дизайн GPU изменений, помимо этого в настоящее время есть проблемы с доступностью HBM 1.0, и вполне возможно, что ситуация в будущем не изменится.
Похоже на то, что 2016 год для сегмента графических ускорителей может стать революционным. Адаптеры после длительного применения 28-нм технологических норм могут наконец «переехать» на 16 или 14 нм. В сочетании с памятью стандартов HBM 2.0 и GDDR6 можно прогнозировать значительное увеличение производительности видеокарт.
Тестирование трех накопителей Crucial m4 128 Gb в режимах RAID0 и RAID5
Метки: 29F64G08CFACB | AHCI | Crucial | Flash | Intel | m4 | Marvel | Micron | NAND | performance | RAID | RAID0 | RAID5 | review | RST | SSD
Дата: 15/01/2012 21:30:57
Подписаться на комментарии по RSS
Что делать в том случае, если скорости какой-либо из подсистем компьютера недостаточно, а возможности для её модернизации на более производительные аналоги уже исчерпаны? В этом случае проблема решается количественным наращиванием характеристик, путем объединения возможностей нескольких устройств для совместной работы в одной системе. В центральных процессорах идет увеличение количества ядер, мощность графической подсистемы увеличивается при помощи таких технологий как SLI и CrossFireX, а для дисковой подсистемы используется объединение нескольких накопителей в RAID-массив. Но если производительность многоядерных процессоров и видеокарт в multi-GPU системе напрямую зависит от эффективности поддержки со стороны программного обеспечения и его оптимизации, то в случае с RAID-массивом большее влияние оказывает драйвера и firmware, а не прикладное ПО.
Возможность объединения нескольких накопителей информации в RAID массивы уже на протяжении многих лет поддерживается абсолютным большинством материнских плат, причем не только тех, что ориентированы на использование в серверах или рабочих станциях, но и для обычных домашних компьютеров. Поддержка технологии RAID есть практически у всех современных чипсетов. Но если три года назад и раньше интегрированный на материнской плате RAID-контроллер не рассматривался как приемлемый вариант для построения очень быстрой дисковой подсистемы, то сейчас ситуация изменилась.
Благодаря росту производительности процессоров, зависимость от него при работе с RAID-массивом уже не так критична как раньше. На большинстве аппаратных RAID контроллеров для использования в качестве кэш-памяти до сих пор применяются "древние" микросхемы с низкой (по современным меркам) пропускной способностью, в то время как драйвера для чипсетных RAID-контроллеров (например, Intel Rapid Storage Technology) для кэширования используют оперативную память, пропускная способность которой достигает 20-30 гигабайт в секунду. Но самое главное - появилась поддержка нового интерфейса SATA 6 GB/sec, то есть вдвое увеличилась пропускная способность SATA-портов.
Это конечно не означает, что интегрированные RAID-контроллеры по своим возможностям стали сравнимы с дискретными платами enterprise-уровня. Но если несколько лет назад для получения скорости дисковой подсистемы в районе гигабайта в секунду требовалось очень дорогостоящее оборудование, то теперь к этому уровню уже вплотную приблизилась связка из обычной материнской платы на чипсете Intel P67/H67/Z68 и пары-тройки быстрых SATA3 SSD.
Для того чтобы выяснить, насколько поднимет производительность дисковой подсистемы объединение нескольких SSD в RAID-массив, были взяты три накопителя Crucial m4 128 Gb. Это позволило создать из них массив как нулевого (из двух и из трех SSD), так и пятого уровня (только из трех). Их обзор уже был опубликован ранее, поэтому переходим непосредственно к результатам их тестирования в режиме RAID.
Тестовая конфигурация и используемое ПО
Для тестирования был собран открытый стенд с такой конфигурацией:
- Процессоры: Intel Core i7-2600K D2 (Sandy Bridge), 3400 МГц;
- Материнская плата: ASUS Maximus IV Extreme, Rev. 1.02, Intel P67, BIOS 1902;
- Память: G.Skill Perfect Storm F3-16000CL7-6GBPS, DDR3-2000, PC3-16000, 2x2048Mb;
- Видеокарта: Sapphire Radeon HD 6950, 2048 Мбайт GDDR5, PCI-E;
- Накопители: Crucial m4 128 Гбайт, Western Digital WD1002FAEX 1Тбайт;
- Блок питания: Antec TruePower Quattro TPQ-1000, 1000W;
- Термопаста: Arctic Cooling MX-4;
- Охлаждение процессора: GlacialTech F101 PWM.
Программное обеспечение:
- OS: Windows 7 Enterprise SP1 x64 v6.1.7601 (english);
- DirectX Redistributable (Jun2010);
- Intel Chipset Device Software v9.2.3.1016;
- Intel Rapid Storage Technology driver v10.6.0.1002;
- Intel Management Engine Interface driver v7.0.10.1203;
- AMD Catalyst driver v11.8;
- CPU-Z v1.58;
- Crystal Disk Mark v3.0.1;
- HD Tune Pro v4.60;
- HD Tach v3.0.4.0;
- ATTO Disk Benchmark v2.46;
- AS SSD Benchmark v1.6.4237.30508;
- AIDA64 Extreme v1.85.1604 beta;
- PCMark05 v1.2.0;
- PCMark Vantage v1.0.2;
- IOmeter v1.1.0 RC1.
Процессор был разогнан до частоты 4700 МГц с напряжением 1.40V путем увеличения множителя.
Память работала на частоте 2133 МГц с таймингами 7-8-7-21 1T и напряжением 1.75V.
Видеокарта работала на номинальных частотах 800/1250 МГц, но с разблокированными до 1536 потоковыми процессорами.
Сравнение производительности одиночного накопителя и RAID-массива
Для подключения накопителей были использованы порты на материнской плате, реализованные средствами чипсета Intel P67.
Результаты были получены еще до выпуска firmware версии 0009 для Crucial m4. С новой прошивкой они могли бы быть еще выше, но, к сожалению, к моменту её появления уже не было повторить возможности тестирование. Разницу производительности между старой и новой прошивкой можно оценить по результатам тестирования на одиночном SSD.
Операционная система загружалась с жесткого диска Western Digital WD1002FAEX. В настройках операционной системы была включена опция для очистки кэша записи (Turn off write-cache buffer flushing). Перед началом тестирования на SSD или RAID-массиве создавался пустой раздел на весь доступный объём в формате NTFS c размером кластера по умолчанию. Дополнительно, при тестировании во всех режимах с RAID, перед запуском каждого бенчмарка, массив был пересобран для того, чтобы на каждом накопителе принудительно выполнить команду TRIM при помощи программы SSD Tweaker.
Производительность измерялась в четырёх режимах:
- Одиночный накопитель в режиме AHCI, подключенный к порту SATA3.
- RAID0 из двух накопителей, подключенных к портам SATA3.
- RAID0 из трёх накопителей, подключенных к портам SATA2. Сравнение с вариантом, при котором один или два из трёх накопителей подключались к портам SATA3, показало такие же результаты. Производительность в RAID0 определяется самым медленным из участников массива.
- RAID5 из трёх накопителей. Два из них были подключены к портам SATA3 и еще один к SATA2.
По умолчанию драйвер Intel Rapid Storage Technology предлагает для массива из SSD-накопителей использовать размер stripe, равный 16 Kb для RAID0 и 128 Kb для RAID5.
Но сравнение результатов с разным размером stripe показало, что в случае с RAID0 из SSD оптимален размер 8 Kb, который и был использован.
Также при создании массива устанавливалось опция "Включить кэш обратной записи тома" (Enable volume write-back cache).
Crystal Disk Mark v3.0.1
Настройки: Test Data = Default (Random), размер тестового файла = 1000 Mb, количество проходов бенчмарка = 3.
HD Tune Pro v4.60
Настройки: Full test, 64 Kb block size.
HD Tach v3.0.4.0
Настройки: Long Bench (32mb zones), запуск в режиме совместимости с Windows XP SP3.
ATTO Disk Benchmark v2.46
Настройки: Total Length = 256 Mb, Queue Depth = 4.
AS SSD Benchmark v1.6.4237.30508
AIDA64 Extreme v1.85.1604 beta - Disk Benchmark.
Настройки: Block Size = 1 Mb.
PCMark05 v1.2.0 - HDD Test Suite
PCMark Vantage v1.0.2 - HDD Test Suite.
IOmeter v1.1.0 RC1
Настройки: Access specification = 100% Random, Block Size = 4 Kb, Queue Depth = 32.
Влияние использования RAID из накопителей SSD на показатели производительности дисковой подсистемы:
- Скорость линейного чтения. Растёт по сравнению с одиночным накопителем, но со временем ухудшается, по мере заполнения массива информацией. Это происходит из-за отсутствия поддержки TRIM в RAID. Скорость чтения восстанавливается только после разборки массива, применения TRIM на всех дисках по отдельности и последующей сборки обратно. Подробнее об этом - в следующем разделе.
- Скорость линейной записи. Растёт, даже при подключении накопителей к портам SATA2.
- Скорость случайного чтения. Растёт при наличии очереди (QD>1) или при размере блока 512Kb и выше (даже без очереди). Незначительно (на 2-4% или 1-2 Mb/sec) уменьшается при отсутствии очереди (QD=1) и размере блока 4Kb и меньше.
- Скорость случайной записи. Растёт в режиме RAID0 и падает в режиме RAID5.
- Буферизированное чтение (HD Tune, AIDA64). Возрастает в десятки раз (до нескольких гигабайт в секунду), независимо от типа массива и количества дисков. Это связано с различным алгоритмом кэширования в драйвере Intel Rapid Storage Technology для одиночных накопителей и RAID-массивов.
- Время доступа. Может изменяться в небольших пределах, но все равно остается очень низким, как и у одиночного накопителя.
- Нагрузка на CPU. Возрастает до 10-19% на линейном чтении (HD Tune, HD Tach) и до 18-37% при случайном доступе блоками 4 Kb с глубиной очереди 32 (IOMeter).
Кроме всего перечисленного выше, в процессе тестирования была обнаружена одна особенность кэширования записи в драйвере Intel Rapid Storage Technology. В случае присутствия в системе любого RAID-массива (даже из HDD), скорость случайной записи блоками 4 Kb (QD=1) на одиночный SSD-накопитель по результатам бенчмарков Crystal Disk Mark и AS SSD Benchmark примерно на 20% (до 123 и 112 MB/sec соответственно) выше, чем в системах без RAID. И даже если массив разобрать, то до ближайшей перезагрузки компьютера, скорость одиночных накопителей не изменится (в том числе и только что разобранных из RAID).
Влияние отсутствия TRIM на производительность RAID-массива из SSD
Как уже было сказано выше, отсутствие поддержки TRIM в RAID приводит к падению скорости чтения после заполнения массива информацией. Провалы образуются только на тех участках, в которые после создания массива производилась запись. И остаются там, даже после удаления записанной информации. Давайте посмотрим, насколько велики эти провалы.
Начнём с конфигурации из двух накопителей в режиме RAID0, подключенных к портам SATA3. Провалы скорости достигают 30%.
AS SSD Benchmark v1.6.4237.30508
В случае использования трех накопителей в режиме RAID0 падение скорости чтения несколько ниже (около 25%), так как сверху их ограничивает пропускная способность SATA2-портов.
HD Tune Pro v4.60
HD Tach v3.0.4.0
PCMark05 v1.2.0 - HDD Test Suite: падение результата с 182010 до 135675
RAID5 из трех накопителей, так же как и RAID0 из двух, теряет примерно 30% скорости чтения.
HD Tach v3.0.4.0
Результаты в бенчмарках PCMark04, PCMark05, PCMark Vantage и PCMark7
Для получения максимальных результатов в бенчмарках PCMark использовалась та же тестовая конфигурация с незначительными изменениями. Блок питания был заменен на Enermax Revolution 1050W и добавлено еще два модуля памяти на микросхемах Elpida Hyper. На процессоре был установлен водоблок Thermalright XWB-01, а на видеокарте водоблок Topmods.net. Оба водоблока охлаждались проточной холодной водой. Процессор был разогнан до частот около 5400 МГц с напряжением 1.65-1.68V, а видеокарта 1030/1530 МГц с напряжением 1.30V.
В PCMark04 влияние дисковой подсистемы на результат минимально, по причине отсутствия HDD-подтестов в System Test Suite. Самое главное в этом бенчмарке - настроить динамическое переключение частоты/множителя/ядер процессора, чтобы не допустить появления ошибки в подтесте Grammar Check. Результат в 23109 баллов уже второй месяц держится на вершине рейтинга hwbot.org.
Отрыв больше трех тысяч от ближайшего результата получен благодаря использованию операционной системы Windows 8 build 7955, а так же настройкам браузера Internet Explorer 9 и видеокодека WMV. Для PCMark04 в RAID из SSD не было необходимости, оказалось достаточно и одного накопителя.
В PCMark05 так же был получен рекордный результат, причем несколько раз. Но все они в течениe короткого времени перекрывались чуть более высокими результатами австралийского оверклокера pro, использовавшего процессор с более высоким разгонным потенциалом и гораздо более мощную и дисковую подсистему.
Итоговый результат в 47070 баллов в настоящее время находится на четвертом месте. И это единственный результат выше 40 тысяч, полученный с использованием всего двух накопителей SSD и интегрированного RAID-контроллера, вместо массива из нескольких аппаратных RAM-дисков (Acard ANS9010 или Gigabyte iRAM). Использование в PCMark05 трех SSD в режиме SATA2 давало почти такие же результаты, как и на двух в SATA3, даже чуть ниже.
PCMark Vantage - самый зависимы от скорости дисковой подсистемы бенчмарк среди всех версий PCMark. Догнать в нём владельцев массивов из множества RAM-дисков при прочих равных условиях очень сложно, поэтому результат в 36467 балла оказался только на 4 месте (или на 2-м, если считать результаты, полученные только на 4-ядерных процессорах).
Для PCMark Vantage уже были использованы все три накопителя в RAID0.
Самая новая версия - PCMark7 зависит от дисковой подсистемы гораздо меньше, чем PCMark Vantage, но и для него также был использован RAID из трех SSD. Результат в 7014 баллов держится на первом месте уже больше двух месяцев.
Использование RAID из SSD позволяет значительно улучшить результаты в бенчмарках PCMark всех версий, за исключением разве что самого старого PCMark04. При этом разница между результатами на двух SSD, подключенных к портам SATA3 и трех к SATA2 очень невелика. Очевидно, что для рекордных результатов стоит использовать только массивы нулевого уровня, RAID5 не подходит из-за крайне низкой скорости записи.
Заключение
Объединение SSD-накопителей в RAID0 позволяет заметно повысить скорости линейного и случайного доступа при работе с большими блоками, либо при наличии глубины очереди. Например, при использовании двух накопителей, скорость чтения на чистом массиве увеличивается почти вдвое, по сравнению с одиночным накопителем, но по мере заполнения его данными начинает довольно сильно проваливаться. Скорость записи стабильна и местами возрастает даже больше, чем вдвое, если конечно включить кэш обратной записи при создании массива. Случайная запись мелкими блоками (4 Kb, QD=1) возрастает в несколько раз, потому как попадает в кэш драйвера RAID-контроллера. Проблем с увеличением времени доступа нет, при условии, что процессор не загружен полностью чем-то еще и может обеспечить выполнение операций ввода-вывода без задержек. Нагрузка на CPU при использовании RAID значительно возрастает, но если он достаточно мощный (и тем более если разогнан), то проблем это не создаст.
Единственный показатель, который в RAID из SSD остается почти без изменений (и даже немного снижается) - это скорость случайного чтения мелких блоков (4 Kb) без параллельной нагрузки (QD=1). Достаточно большое число пользователей SSD считает этот показатель одним из важнейших и по этой причине отказываются от использования RAID из SSD. Несомненно, он важен, но не стоит забывать и о том, что в операционных системах, для установки которых в первую очередь и используют твердотельные накопители, присутствует множество файлов самого разного объема. А что касается параллельного доступа - он будет в любой многозадачной системе. Сколько у вас одновременно работает программ, в фоновом режиме работающих с файлами? Антивирус, firewall, проигрыватель мультимедиа, клиент P2P-сетей... Достаточно четырех, но чем их больше - тем больше будет пользы от RAID. Впрочем, для создания параллельной нагрузки, достаточно и последнего в этом списке.
Основная проблема RAID-массивов из SSD это отсутствие возможности трансляции команды TRIM через драйвер RAID-контроллера. Она до сих пор не решена (если не считать единичный пока случай использования собственного нестандартного драйвера у OCZ RevoDrive 3) и срок её решения неизвестен. Отсутствие TRIM приводит к снижению скорости работы массива со временем, вернуть обратно которую можно только пересборкой массива и принудительным выполнением TRIM на всех отдельных накопителях. Еще один недостаток - отсутствие прямого доступа к данным в SMART. Из-за этого нельзя отслеживать текущее состояние накопителя. Соответственно не будут работать и программы типа SSDlife, дающие прогноз состояния/жизни накопителя, основываясь на текущих значениях параметров из SMART (Wear Leveling Count и т.п.).
Новейшие микросхемы системной логики Intel (P67/H67/Z68) обладают поддержкой только двух SATA3 портов, а конкурирующие с ними решения от AMD - более низкой производительностью, как самих процессоров, так и интегрированного SATA/RAID-контролера. Поэтому, если вы хотите использовать весь потенциал SATA3 SSD накопителей в количестве более двух, то на данный момент вам для этого понадобится очень недешевый дискретный контроллер с поддержкой более двух портов SATA3. Но лучше еще немного подождать до появления материнских плат с чипсетом Intel X79 и наличием шести портов SATA3 у встроенного контроллера.
Производительность двух SSD в режиме SATA3 близка к трем в SATA2. Второй вариант будет предпочтительней только в том случае, если скорость записи для вас важней скорости чтения. Тоже можно сказать и про выбор между одним SATA3 SSD и двумя SATA2 в RAID0. Но самой сомнительной конфигурацией массива из трех SSD является RAID5. Уровни RAID за исключением нулевого используются для обеспечения отказоустойчивых конфигураций, а для этого необходимо либо отключать кэш записи, либо обеспечивать бесперебойное питание компьютера. Иначе при сбое по питанию произойдет потеря данных, оставшихся на тот момент в кэше записи. Скорость записи у трех накопителей в RAID5 и так ниже, чем у одиночного SSD. А после отключения кэша она упадет до совсем низкого уровня. При использовании SSD исчезает только один из недостатков RAID5 - долгая инициализация массива.
Учитывая, что объем твердотельных накопителей растет пропорционально их стоимости, ответить на вопрос о целесообразности RAID из SSD можно так:
- Использовать накопители объемом 60/64 Gb в RAID лучше не стоит. Их производительность заметно ниже более ёмких моделей из-за использования только четверти каналов контроллера flash-памяти. Предпочтительней будет один накопитель на 120/128 Gb.
- Если сравнивать RAID0 из двух накопителей объемом 120/128 Gb и один на 240/256 Gb, то тут уже не все так однозначно. Скорость записи будет выше у варианта с RAID, но по минимальной скорости чтения (а не пиковой, как у только что созданного массива) второй вариант может оказаться предпочтительней. Большинство обычных домашних пользователей вполне могут обойтись одним накопителем. Конфигурацию с RAID можно выбрать, например, для одновременной записи потоков с нескольких видеокамер, для компьютеров типа "seedbox/dump" или просто для бенчмаркинга в PCMark.
- Ну и если взять за основу для построения массива два накопителя объемом 240/256 Gb, то это точно будет лучше, чем один на 480/512 Gb.
Редакция ModLabs.net выражает благодарность:
- компании ASUS за материнскую плату ASUS Maximus IV Extreme,
- компании Sapphire за видеокарту Sapphire Radeon HD 6950,
- компании Antec за блок питания True Power Quattro TPQ-1000.
S_A_V
Обсуждение материала приветствуется. Комментарии к статье можно оставить через социальную сеть Вконтакте, Facebook или в специальной теме нашего форума.
Обзор SSD-накопителя Crucial m4 128Gb
Метки: 29F64G08CFACB | C400 | Crucial | D9LGQ | Flash | m4 | Marvel | Micron | NAND | RealSSD | SSD
Дата: 11/12/2011 17:17:17
Подписаться на комментарии по RSS
Все современные твердотельные SSD-накопители с интерфейсом SATA 6 GB/sec, присутствующие сейчас на потребительском рынке, можно условно поделить на три категории. К первой, самой многочисленной категории, можно отнести модели на основе контроллера SandForce SF-2281. К ним относятся OCZ Vertex 3 / Agility 3 / Solid 3, Corsair Force 3 / Force GT, Kinston HyperX, Mushkin Chronos Deluxe, OWC Mercury Extreme Pro 6G, Extrememory XLR8 Express и другие.
Часть производителей выбрала в качестве основы для своих SSD контроллер Marvel 88SS9174. К этой группе можно отнести такие накопители как Crucial RealSSD C300, Crucial m4, Intel 510 Series, Corsair Performance 3 Series и Plextor PX-M2 Series.
И только единицы способны использовать контроллер собственной разработки для своих SSD. На данный момент мне известно только об одном таком случае среди SATA3 SSD - это Samsung PM830 на основе контроллера Samsung S4LJ204X01.
До сих пор еще можно найти немало предложений накопителей с интерфейсом SATA2, пользующихся определенным спросом. Но если еще год назад мог возникнуть вопрос о том, действительно ли необходим более скоростной интерфейс для SSD, то сейчас уже никаких сомнений в этом нет. Тем более что по скорости чтения современные модели уже вплотную подобрались к пределу SATA3 и следующее поколение накопителей, возможно, потребует еще более быстрой версии интерфейса.
Первой перешла на использование интерфейса SATA3 в своих SSD компания Crucial, выпустив RealSSD C300. Поначалу у него просто не было конкурентов по скорости, но в этом году появилось множество предложений SATA3 SSD от других производителей, которые смогли по некоторым параметрам (в основном по скорости линейного чтения) превзойти Crucial RealSSD C300. Поэтому на замену Crucial RealSSD C300 была выпущена новая модель - Crucial m4 (так же известная как Micron C400).
Первое время обе модели выпускались одновременно, но на данный момент на официальном сайте уже предлагается только Crucial m4, хотя и Crucial RealSSD C300 при желании все еще можно найти.
Новая модель получилась не только быстрее (это видно даже из сравнения заявленных скоростей в спецификациях накопителей), но и дешевле (благодаря использованию микросхем флэш-памяти, произведенных по более тонкому техпроцессу). Вопрос лишь в том насколько быстрее. Это мы и выясним в сегодняшнем обзоре.
Спецификации
В таблице перечислены технические характеристики нового накопителя Crucial m4 128Gb в сравнении со старым Crucial C300 128Gb:
Производитель | Crucial (Micron) | Crucial (Micron) |
Модель | RealSSD C300 128 GB | m4 (C400) 128 GB |
Part number | CTFDDAC128MAG-1G1 | CT128M4SSD2 |
Контроллер | Marvel 88SS9174-BJP2 | Marvel 88SS9174-BLD2 |
Флэш-память | 16 x 8GB Micron NW274 34-nm MLC NAND Flash | 16 x 8GB Micron 29F64G08CFACB 25-nm MLC NAND Flash |
Буферная память | 128Mb Micron D9LGQ | 128Mb Micron D9LGQ |
Объём | 128 GB | 128 GB |
Скорость линейного чтения * | 355 Мб/сек | 415 Мб/сек |
Скорость линейной записи * | 140 Мб/сек | 175 Мб/сек |
Форм-фактор | 2.5" | 2.5" |
Интерфейс | SATA 6 Gb/s | SATA 6 Gb/s |
Поддерживаемые технологии | TRIM, NCQ, RAID | TRIM, NCQ, RAID |
Наработка на отказ (MTBF) | 1 200 000 часов | 1 200 000 часов |
Гарантия | 3 года | 3 года |
Цена ** | n/a | $224.99 |
* при подключении к интерфейсу SATA 6 Gb/s
** цена взята с официального сайта производителя
Из заметных отличий только использование обновленной ревизии контроллера Marvel (BLD2 вместо BJP2), флэш-памяти (25-нм вместо 34-нм) и возросшие скорости (на 17% выше чтение и на 25% запись).
Какое-то время обе модели были доступны одновременно, но на данный момент C300 уже почти исчез из продажи, а цена на m4 была значительно снижена.
Упаковка, комплектация и дизайн PCB
Накопители Crucial m4 128Gb предлагаются в трех вариантах поставки, отличающихся ценой, комплектацией и part number:
- CT128M4SSD2 по цене $224.99 - в комплекте только сам накопитель;
- CT128M4SSD2BAA по цене $229.98 - дополнительно присутствует 3.5" Adapter Bracket (переходник для крепления к корпусу в 3.5" отсек);
- CT128M4SSD2CCA по цене $239.99 - дополнительно присутствует Data Transfer Kit (переходник с SATA на USB и программное обеспечение для клонирования информации с одного накопителя на другой).
Для тестирования был взят первый вариант. Накопитель поставляется в небольшой картонной коробке:
![]() |
![]() |
Корпус, как и у предыдущей модели, выполнен из двух алюминиевых пластин, скрепленных при помощи четырёх винтов. Внешне изменился только дизайн наклейки с лицевой стороны. Весит накопитель всего лишь 75 грамм, а его размеры составляют 100.5x69.85x9.5-мм.
![]() |
![]() |
Сбоку расположен стандартный разъём SATA и разъём питания, никаких переходников для подключения накопителя не потребуется:
В отличие от Crucial RealSSD C300, у Crucial m4 не оказалось гарантийной наклейки, то есть его можно разобрать, не опасаясь потерять гарантию. Отсутствие её на образце, предназначенном для тестирования, было бы не удивительно, но данный накопитель был куплен в магазине как retail.
Накопитель собран на небольшой плате, с одной стороны которой расположен контроллер, а с другой микросхема кэш-памяти. Флэш-память установлена с обеих сторон - по восемь микросхем на каждой.
![]() |
![]() |
Crucial m4 использует чуть более новый контроллер, чем у Crucial RealSSD C300 - Marvel 88SS9174-BLD2 вместо 88SS9174-BJP2. Но по своим функциональным возможностям они равны.
Вместо 34-нм флэш-памяти Micron NW274 на Crucial m4 установлены 25-нм микросхемы 29F64G08CFACB. С одной стороны это снизило себестоимость накопителя и позволило сделать его дешевле, чем Crucial RealSSD C300. Но с другой стороны у микросхемы, произведенные по более тонкому техпроцессу, отличаются меньшим ресурсом перезаписи.
В качестве буфера используется все та же микросхема DDR3-памяти Micron D9LGQ объёмом 128 мегабайт:
Для хранения прошивки (firmware) используется микросхема ST Microelectronics M25P80:
Накопитель потребляет ток не более двух ампер от линии +5V, поэтому для его питания достаточно простого преобразователя, построенного с использованием регулятора Linear Technology LTC3412A.
![]() |
![]() |
Тестовая конфигурация и используемое ПО
Для тестирования был собран открытый стенд с такой конфигурацией:
- Процессоры: Intel Core i7-2600K D2 (Sandy Bridge), 3400 МГц;
- Материнская плата: ASUS Maximus IV Extreme, Rev. 1.02, Intel P67, BIOS 1902;
- Память: G.Skill Perfect Storm F3-16000CL7-6GBPS, DDR3-2000, PC3-16000, 2x2048Mb;
- Видеокарта: Sapphire Radeon HD 6950, 2048 Мбайт GDDR5, PCI-E;
- Накопители: Crucial m4 128 Гбайт, Crucial RealSSD C300 128 Гбайт, Western Digital WD1002FAEX 1Тбайт;
- Блок питания: Antec TruePower Quattro TPQ-1000, 1000W;
- Термопаста: Arctic Cooling MX-4;
- Охлаждение процессора: GlacialTech F101 PWM.
Программное обеспечение:
- OS: Windows 7 Enterprise SP1 x64 v6.1.7601 (english);
- DirectX Redistributable (Jun2010);
- Intel Chipset Device Software v9.2.3.1016;
- Intel Rapid Storage Technology driver v10.6.0.1002;
- Intel Management Engine Interface driver v7.0.10.1203;
- AMD Catalyst driver v11.8;
- CPU-Z v1.58;
- Crystal Disk Mark v3.0.1;
- HD Tune Pro v4.60;
- HD Tach v3.0.4.0;
- ATTO Disk Benchmark v2.46;
- AS SSD Benchmark v1.6.4237.30508;
- AIDA64 Extreme v1.85.1604 beta;
- PCMark05 v1.2.0;
- PCMark Vantage v1.0.2;
- IOmeter v1.1.0 RC1.
Процессор был разогнан до частоты 4700 МГц с напряжением 1.40V путем увеличения множителя.
Память работала на частоте 2133 МГц с таймингами 7-8-7-21 1T и напряжением 1.75V.
Видеокарта работала на номинальных частотах 800/1250 МГц, но с разблокированными до 1536 потоковыми процессорами.
Накопители подключались к порту SATA-контроллера, встроенного в чипсет Intel P67, который работал в режиме AHCI и на скорости 6 Гбит/cек.
В настройках операционной системы была включена опция для очистки кэша записи (Turn off write-cache buffer flushing).
Сравнение производительности до и после обновления firmware
Сама процедура обновления не изменилась со времен предыдущей модели SSD от Crucial и уже была описана ранее, поэтому я не буду подробно останавливаться на этом вопросе. Кому интересно можете посмотреть в соответствующем разделе обзора Crucial RealSSD C300 или в документе Firmware Update Guide, выложенном на сайте производителя (на английском языке).
Изначально в накопителе была самая первая версия firmware 0001. Перед началом тестирования она была обновлена на последнюю, на тот момент версию 0002. Изменений в производительности она не принесла, но зато исправляла проблему с Link Power Management (LPM), приводящую к возможности возникновения "фризов" в работе операционной системы.
Но когда тесты были закончены, стала доступна версия 0009, большинство изменений в которой было направлено на повышение производительности. Поэтому после обновления на версию 0009 все тесты были проведены заново.
Crystal Disk Mark v3.0.1
Настройки: Test Data - Default (Random).
Обновление прошивки привело к увеличению скорости случайного чтения 4 Kb блоков с глубиной очереди 32 на 47%. Скорость линейного чтения возросла на 20%. Также немного (на 5%) увеличилась скорость чтения блоков размером 512 Kb. Незначительно (на 4%) упали скорости чтения и записи 4 Kb блоков с глубиной очереди равной единице. Остальные показатели остались без изменений.
ATTO Disk Benchmark v2.46
Настройки: Total Length = 256 Mb, Queue Depth = 4.
В ATTO Disk Benchmark хорошо заметна польза от новой прошивки на операциях чтения с глубиной очереди равной четырём. С размером блока 512 байт и 1 Kb разница невелика. Но, начиная от 4K, она превышает 100 мегабайт в секунду, что в среднем составляет 25-30%. Скорость записи тоже увеличилась, но только на 1-3%.
IOmeter v1.1.0 RC1
Настройки: Access specification = 100% Random, Block Size = 4 Kb, Queue Depth = 32.
Скорость чтения в IOMeter увеличилась на 38%, а скорость записи на 4%. Уменьшилось среднее время доступа, но при этом повысилось максимальное. И в 2-3 раза возросла нагрузка на CPU.
По итогам тестирования видно, что новая прошивка действительно поднимает производительность накопителей Crucial m4 на новый уровень и её можно рекомендовать для использования всем владельцам этих SSD.
Сравнение производительности пустого и заполненного накопителя
Уровень производительности пустого и заполненного информацией накопителя может существенно отличатся, в чем вы могли уже убедиться ранее на примере OCZ RevoDrive X2. Такое же сравнение было проведено и для Crucial m4 128 Gb.
Производительность измерялась в трех режимах:
- Пустой накопитель, отформатированный под один раздел размером 119Gb. Операционная система загружалась с HDD.
- Накопитель, . отформатированный под один раздел размером 119Gb и сразу после форматирования заполненный несколькими крупными файлами на 85% от своего объема. Операционная система загружалась с HDD.
- Накопитель, используемый в течении нескольких недель как системный диск. Был отформатирован на четыре раздела, три из которых содержат три разных операционных системы (Windows XP SP1 x86, Windows 7 SP1 x64, Windows 8 M3 x64), а четвертый раздел выделен для хранения сжатых образов первых трех разделов в формате Norton Ghost. Операционная система загружалась со второго раздела SSD. Бенчмарки, работающие на уровне файловой системы, запускались на четвертом разделе SSD.
Часть бенчмарков показала примерно равные результаты во всех трех режимах. Среди них такие как Crystal Disk Mark, ATTO Disk Benchmark, AS SSD Benchmark, Anvils Storage Utilities и PCMark7. Что уже неплохо, так как у того же OCZ RevoDrive X2 зависимость от заполнения информацией и использования Secure Erase для восстановления прежнего уровня производительности проявлялась даже в Crystal Disk Mark и AS SSD Benchmark. А у накопителей Crucial нет необходимости в использовании Secure Erase, достаточно воспользоваться функцией быстрого форматирования в Windows, либо просто удалить все файлы и запустить TRIM Optimize Manager в программе SSD Tweaker.
Но в другой части бенчмарков были обнаружены различия в результатах пустого и заполненного накопителя. Остановимся подробнее на этих различиях.
HD Tune Pro v4.60
Настройки: Full test, 64 Kb block size.
1. На пустом накопителе график чтения ровный. Небольшой провал в самом начале из-за того что операционная система успела создать пару скрытых папок еще до запуска бенчмарка.
2. На заполненном крупными файлами, но не использовавшемся продолжительное время накопителе график чтения уже не идеально ровный, но все еще без сильных провалов.
3. На накопителе с огромным количеством файлов самых разных размеров и бывшем в использовании несколько недель уже видны провалы скорости чтения, которые местами достигают 50 MB/sec.
Дополнительно было проведено тестирование с размером блока в 1 Mb, но вид графиков остался прежним. Разница была лишь в том, что скорости во всех сравниваемых режимах были выше, чем с размером блока в 64 Kb. Такой же вид графиков повторился и в бенчмарке HD Tach.
AIDA64 Extreme v1.85.1604 beta - Disk Benchmark.
Настройки: Block Size = 1 Mb.
Падение скорости в AIDA64 Disk Benchmark менее заметно, потому как этот бенчмарк делает только выборочное чтение, а не по всей памяти накопителя, но здесь оно тоже есть.
PCMark05 v1.2.0 - HDD Test Suite
Похожие результаты получились и в HDD-тесте PCMark Vantage.
IOmeter v1.1.0 RC1
Настройки: Access specification = 100% Random, Block Size = 4 Kb, Queue Depth = 32.
В бенчмарке IOMeter скорость чтения осталась без изменений, но скорость записи снизилась в 1.5-2 раза. Настолько же выросло и среднее время доступа.
Сравнение Crucial m4 128 Gb и Crucial RealSSD C300 128 Gb
Для подключения накопителей были использованы SATA3-порты на материнской плате, реализованные средствами чипсета Intel P67.
Версия firmware у Crucial m4 128 Gb была обновлена до 0009, а у Crucial RealSSD C300 128 Gb - до 0006.
На обоих накопителях перед началом тестирования создавался пустой раздел на весь доступный объём 119 Гбайт в формате NTFS c размером кластера по умолчанию. Операционная система загружалась с жесткого диска Western Digital WD1002FAEX.
Результаты тестирования представлены в виде графиков. Для показателей Crucial m4 128 Gb использован синий цвет, а Crucial RealSSD C300 128 Gb - желтый, что соответствует цветам наклейки на корпусе накопителей.
Crystal Disk Mark v3.0.1
Настройки: Test Data - Default (Random).
Crucial m4 128 Gb превосходит Crucial RealSSD C300 128 Gb на операциях линейного чтения (+40%) и записи (+30%), но уступает ему при работе с блоками размером 4 Кб и глубиной очереди равной единице (-20% чтение, -10% запись).
HD Tune Pro v4.60
Настройки: Full test, 64 Kb block size.
В среднем у Crucial m4 128 Gb на 20% выше скорость чтения и на 25% скорость записи на операциях с размером блока 64 Kb. Но если его увеличить, например до 1 Mb, то разница между двумя накопителями увеличится еще больше (это видно по результатам в AIDA64 Disk Benchmark). Так же у Crucial m4 128 Gb меньше время доступа, но чуть выше нагрузка на CPU.
HD Tach v3.0.4.0
Настройки: Long Bench (32mb zones), запуск в режиме совместимости с Windows XP SP3.
В HD Tach, так же как и в HD Tune, у Crucial m4 128 Gb выше скорость чтения (+15%), меньше время доступа и выше нагрузка на CPU.
ATTO Disk Benchmark v2.46
Настройки: Total Length = 256 Mb, Queue Depth = 4.
Чем больше размер блока - тем сильнее преимущество Crucial m4 128 Gb над Crucial RealSSD C300 128 Gb. Незначительный проигрыш есть только с размером блока 512 байт. При увеличении его до 1 Kb уже наблюдается равенство. А начиная от 128 Kb для операций чтения и от 16 Kb для записи, превосходство Crucial m4 128 Gb составляет в среднем уже 45% по чтению и 25% по записи.
AS SSD Benchmark v1.6.4237.30508
Результаты в этом бенчмарке в целом повторяют полученные в Crystal Disk Mark (чтение/запись) и HD Tune (время доступа). У Crucial m4 128 Gb выше скорость линейного чтения (+41%) и записи (+35%), а также ниже время доступа. Но скорость работы с блоками размером 4 Kb при глубине очереди равной единице хуже на 12-20%.
AIDA64 Extreme v1.85.1604 beta - Disk Benchmark.
Настройки: Block Size = 1 Mb.
Скорость линейного чтения при работе с блоками в 1 Mb у Crucial m4 128 Gb выше на 42%. И снова видим более чем двукратное превосходство по времени доступа.
PCMark05 v1.2.0 - HDD Test Suite.
PCMark Vantage v1.0.2 - HDD Test Suite.
IOmeter v1.1.0 RC1
Настройки: Access specification = 100% Random, Block Size = 4 Kb, Queue Depth = 32.
Скорость случайного чтения блоками 4 Kb c большой глубиной очереди у Crucial m4 128 Gb примерно на 30% выше, чем у Crucial RealSSD C300 128 Gb. Среднее время доступа стало чуть ниже, но максимальное заметно повысилось. И в 2.5 раза увеличилась нагрузка на процессор.
По результатам сравнения можно сказать, что единственный показатель, по которому Crucial m4 128 Gb оказался чуть хуже, чем Crucial RealSSD C300 128 Gb - это операции с мелкими блоками (4 Kb и меньше), с небольшой глубиной очереди, либо вообще без неё. Но разница небольшая, в среднем она составляет 15% или 15 MB/sec. Зато по всем остальным скоростным показателям новый накопитель выглядит привлекательней. Особенно заметно это на операциях линейного чтения, в которых Crucial m4 128 Gb на 40% быстрее, чем Crucial RealSSD C300 128 Gb. Рост скоростей привел к увеличению нагрузки на центральный процессор, но для современных компьютеров, оснащенных портом SATA 6 Gb/sec, эта нагрузка практически незаметна.
Заключение
Обычно в заключении принято указывать преимущества и недостатки протестированного устройства, но в данном случае сложно отнести что-либо к явным недостаткам Crucial m4 128Gb.
Да, он использует 25-nm микросхемы флэш-памяти Micron 29F64G08CFACB с меньшим ресурсом перезаписи, чем у 34-nm микросхем Micron NW274 в Crucial RealSSD C300. Но именно это позволило снизить цену, несмотря на лучшие скоростные характеристики. Трех лет гарантии вполне достаточно, чтобы не боятся преждевременного выхода из строя накопителя. За это время наверняка выйдет что-то новое и еще более быстрое, а проблема исчерпания ресурсов пускай волнует тех, кто покупает "железо" на вторичном рынке.
Скорость записи по-прежнему зависит от объема накопителя в линейке. Точнее от количества задействованных каналов у контроллера флэш-памяти. Но это у всех SSD так, даже у тех самых SandForce (обоих поколений), как только они столкнутся с несжимаемыми данными.
Объема в 128 гигабайт в большинстве случаев вполне достаточно для установки операционной системы и основных программ, необходимых для работы. На протестированном экземпляре смогли уместиться три разных версии Windows, их резервные образы, все бенчмарки (в том числе несколько игр со встроенными бенчмарками), коллекция часто используемых драйверов на 10 Gb и еще осталось в запасе немного свободного места. Конечно для хранения архивов, дистрибутивов, образов и аудио-видео файлов по-прежнему необходим традиционный жесткий диск, но перенос часто используемых фалов на SSD позволяет подключать остальные накопители только при необходимости (например, по интерфейсу USB 3.0 и без необходимости перезагрузки). Это поможет сделать компьютер более тихим в ночное время суток.
Цены на SSD все еще высоки для многих пользователей, хотя и немного снизились за последнее время. Вместо 128 Gb SATA3 SSD все еще можно купить жесткий диск максимального объема в 3 терабайта, и даже еще останется. Но никакой HDD даже близко не даст такого же уровня производительности. В одной ценовой категории всегда приходится выбирать между скоростью и объемом. При большом желании можно получить и то и другое, но тогда и цена будет соответствующая.
Вообще если говорить о цене, то Crucial m4 (в минимальной комплектации) является одним из самых дешевых SATA3 SSD. Если поискать, то модель на 128 Gb на момент написания обзора (сентябрь 2011) можно купить всего за 136 евро, не считая VAT и цену доставки. Дешевле можно встретить разве что "не топовые" модели типа OCZ Agility 3 и Corsair Force 3, которые уступают по скорости более дорогим OCZ Vertex 3 и Corsair Force GT. Учитывая отличный уровень производительности Crucial m4 128 Gb (особенно с новой прошивкой) и умеренной ценой (относительно других SATA3 SSD), можно отметить данный продукт наградой Price/Quality Leader.
Crucial m4 128Gb, как и многие другие SATA3 SSD, можно рекомендовать, в том числе и для владельцев компьютеров без поддержки интерфейса SATA3. Даже в режиме SATA2 они будут быстрее многих (если не всех) моделей с поддержкой только SATA2. Но все же для полного раскрытия потенциала SATA3 SSD будет необходима материнская плата с интегрированным в чипсет SATA3-контроллером, то есть достаточно современный компьютер. Или как вариант - серверный SATA3/SAS2-контроллер с интерфейсом PCI-E x4 или PCI-E x8. Дешевые SATA3-контроллеры на основе Marvel 88SE9128 (неважно интегрированные или в виде отдельной платы PCI-E x1) по некоторым показателям могут быть даже хуже чипсетных SATA2-контроллеров.
Редакция ModLabs.net выражает благодарность:
- компании Crucial за накопитель RealSSD C300 128 Gb,
- компании ASUS за материнскую плату ASUS Maximus IV Extreme,
- компании Sapphire за видеокарту Sapphire Radeon HD 6950,
- компании Antec за блок питания True Power Quattro TPQ-1000.
S_A_V
Обсудить материал можно в специальной ветке нашего форума.
SSD-накопители Micron RealSSD C400 стартовали в продаже
Метки: C400 | Micron | RealSSD | SSD-накопители
Дата: 21/03/2011 08:38:44
Подписаться на комментарии по RSS
Второе поколение твердотельных накопителей с интерфейсом 6 Гбит/с от компании Micron Technology, которые получили обозначение RealSSD C400, на днях стали доступны в продаже (по крайней мере на просторах Соединенных Штатов). На выбор покупателей предоставлены модели типоразмера 1,8 и 2,5 дюйма, каждая из которых оснащается контроллером Marvell и использует 25-нанометровые чипы памяти MLC (Multi-Level Cell) NAND. На рынке можно будет встретить новинки емкостью от 64 до 512 ГБ.
Хранители данных RealSSD C400 имеют MTBF (среднего времени наработки на отказ) равное 1200000 часов, а скорость чтения и записи случайных блоков по 4 КБ составляет 40000 IOPS (операций ввода-вывода) и 50000 IOPS соответственно; скорость записи на 64-гигабайтную модель – 20000 IOPS. Что касается скорости последовательной записи и чтения, то она равна: 415 и 95 МБ/с (64 ГБ), 415 и 175 МБ/с (128 ГБ) и 415/260 МБ/с (512 ГБ). Стоимость твердотельных накопителей Micron RealSSD C400 емкостью 64 ГБ, 128 ГБ и 512 ГБ равна $129.99, $244.99 и $949.99 соответственно.